This dataset contains all the code, notebooks, datasets used in the study conducted for the research publication titled "Multi-scale CyberGIS Analytics for Detecting Spatiotemporal Patterns of COVID-19 Data". Specifically, this package include the artifacts used to conduct spatial-temporal analysis with space time kernel density estimation (STKDE) using COVID-19 data, which should help readers to reproduce some of the analysis and learn about the methods that were conducted in the associated book chapter.
## What’s inside – A quick explanation of the components of the zip file
* Multi-scale CyberGIS Analytics for Detecting Spatiotemporal Patterns of COVID-19.ipynb is a jupyter notebook for this project. It contains codes for preprocessing, space time kernel density estimation, postprocessing, and visualization.
* data is a folder containing all data needed for the notebook
* data/county.txt: US counties information and fip code from Natural Resources Conservation Service.
* data/us-counties.txt: County-level COVID-19 data collected from New York Times COVID-19 github repository on August 9th, 2020.
* data/covid_death.txt: COVID-19 death information derived after preprocessing step, preparing the input data for STKDE. Each record is if the following format (fips, spatial_x, spatial_y, date, number of death ).
* data/stkdefinal.txt: result obtained by conducting STKDE.
* wolfram_mathmatica is a folder for 3D visulization code.
* wolfram_mathmatica/Visualization.nb: code for visulization of STKDE result via weolfram mathmatica.
* img is a folder for figures.
* img/above.png: result of 3-D visulization result, above view.
* img/side.png: result of 3-D visulization, side view.
CyberGIS; COVID-19; Space-time kernel density estimation; Spatiotemporal patterns
DOI | 10.13012/B2IDB-0299659_V1 |
---|---|
Publcation Date | 04-19-2021 |
Title | Multi-scale CyberGIS Analytics for Detecting Spatiotemporal Patterns of COVID-19 |
Author | Lyu, Fangzheng Kang, Jeon-Young Wang, Shaohua Han, Su Li, Zhiyu Wang, Shaowen Padmanabhan, Anand |
Keywords | CyberGIS; COVID-19; Space-time kernel density estimation; Spatiotemporal patterns |
Related Publication (Citation) | Lyu, Fangzheng; Kang, Jeon-Young; Wang, Shaohua; Han, Su; Li, Zhiyu; Wang, Shaowen; Padmanabhan, Anand (2021): Multi-scale CyberGIS Analytics for Detecting Spatiotemporal Patterns of COVID-19. University of Illinois at Urbana-Champaign. https://doi.org/10.13012/B2IDB-0299659_V1 |
Note |
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nunc tincidunt pellentesque massa nec fermentum. Aliquam tincidunt magna in sem sagittis facilisis. Nam vel lorem vel nibh euismod scelerisque. Mauris hendrerit lacinia tellus non consectetur. Praesent sagittis dolor iaculis, hendrerit neque non, feugiat mauris. Morbi vitae tortor ut erat efficitur suscipit id sit amet felis. In lacinia orci at laoreet porttitor. In sagittis orci hendrerit massa commodo, at consequat erat tempus. Phasellus at purus suscipit, viverra mi faucibus, blandit erat.
Maecenas quis interdum lorem. Ut malesuada dignissim sollicitudin. Aenean et euismod mauris, sit amet tempus eros. Ut leo sapien, lobortis id risus sed, semper ultricies lorem. Quisque hendrerit libero in nunc semper, eu interdum ex volutpat. Nunc varius venenatis venenatis. Vivamus pretium finibus metus vitae feugiat. Aenean ac neque eu nunc pretium pulvinar. Nulla facilisi. Orci varius natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. In commodo felis turpis, et faucibus ligula auctor quis. Suspendisse non eros facilisis, placerat nulla ac, iaculis massa. Curabitur nec turpis placerat lorem condimentum ultrices at vel metus. Maecenas tortor ligula, ultrices et metus auctor, volutpat laoreet diam. Maecenas sodales bibendum accumsan.
Mauris lacinia est quis ante faucibus rhoncus. Sed cursus luctus dui. Quisque vel sapien nec lectus sodales interdum ut ut orci. In porta odio diam, venenatis tempor est luctus ut. Donec ac ligula imperdiet, facilisis justo non, dapibus sem. Nulla dui nulla, feugiat feugiat porta vitae, semper sed purus. Nullam erat lacus, scelerisque eget eros nec, vulputate facilisis massa. Aliquam dictum quis nunc sed lacinia. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Aenean gravida, orci nec auctor blandit, justo ante accumsan leo, nec condimentum urna ante id diam. Nam sed placerat urna. Phasellus est nisi, commodo at diam sit amet, pretium maximus diam. Integer dictum ligula dui, vel fermentum arcu efficitur id. Suspendisse potenti. Nunc mollis massa elementum felis laoreet, vel luctus odio ultrices.