Surface water is an irreplaceable strategic resource for human survival and social development. The accurate delineation of hydrological streamlines is critically important in various scientific disciplines, such as the assessment of present and future water resources, climate models, agriculture suitability, river dynamics, wetland inventory, watershed analysis, surface water survey and management, flood mapping, and environment monitoring. Traditional hydrologic models generate streamlines solely based on topologic information, which inevitably contain errors. For example, dried out drainage lines would always be falsely recognized as streamlines. The traditional method also ignores the information from the complex 3D environment of streamlines and surface reflectance information, which would potentially be very helpful to accurately delineate streamlines. In recent years, the availability of high accuracy LiDAR data provides us a promising method to capture both 3D information of the environment and also surface reflectance information of land cover. LiDAR sensors use NIR light in the form of a pulsed laser to measure ranges (variable distances) to the ground and also reflectance information with multiple returns. These light pulses generate precise, three-dimensional information about the shape of the surface characteristics. In this research, multiple LiDAR feature maps are generated, and we develop a U-net model for doing the streamline detection and we also test several traditional machine learning methods as our baseline for comparison. Our accuracy evaluation shows that our U-net model is able to outperform the best baseline method by 8.08% on average in F1-score and provide better smoothness and connectivity over the classified streamline channels.
DOI | |
---|---|
Publcation Date | 03-10-2021 |
Title | Hydrological Streamline Detection with CyberGIS-Jupyter Using Deep Learning |
Author | Zewei Xu Nattapon Jaroenchai Arpan Man Sainju Li Chen Zhiyu Li Larry Stanislawski Ethan Shavers Bin Su Zhe Jiang Shaowen Wang |
Keywords | |
Related Publication (Citation) | |
Note |
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nunc tincidunt pellentesque massa nec fermentum. Aliquam tincidunt magna in sem sagittis facilisis. Nam vel lorem vel nibh euismod scelerisque. Mauris hendrerit lacinia tellus non consectetur. Praesent sagittis dolor iaculis, hendrerit neque non, feugiat mauris. Morbi vitae tortor ut erat efficitur suscipit id sit amet felis. In lacinia orci at laoreet porttitor. In sagittis orci hendrerit massa commodo, at consequat erat tempus. Phasellus at purus suscipit, viverra mi faucibus, blandit erat.
Maecenas quis interdum lorem. Ut malesuada dignissim sollicitudin. Aenean et euismod mauris, sit amet tempus eros. Ut leo sapien, lobortis id risus sed, semper ultricies lorem. Quisque hendrerit libero in nunc semper, eu interdum ex volutpat. Nunc varius venenatis venenatis. Vivamus pretium finibus metus vitae feugiat. Aenean ac neque eu nunc pretium pulvinar. Nulla facilisi. Orci varius natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. In commodo felis turpis, et faucibus ligula auctor quis. Suspendisse non eros facilisis, placerat nulla ac, iaculis massa. Curabitur nec turpis placerat lorem condimentum ultrices at vel metus. Maecenas tortor ligula, ultrices et metus auctor, volutpat laoreet diam. Maecenas sodales bibendum accumsan.
Mauris lacinia est quis ante faucibus rhoncus. Sed cursus luctus dui. Quisque vel sapien nec lectus sodales interdum ut ut orci. In porta odio diam, venenatis tempor est luctus ut. Donec ac ligula imperdiet, facilisis justo non, dapibus sem. Nulla dui nulla, feugiat feugiat porta vitae, semper sed purus. Nullam erat lacus, scelerisque eget eros nec, vulputate facilisis massa. Aliquam dictum quis nunc sed lacinia. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Aenean gravida, orci nec auctor blandit, justo ante accumsan leo, nec condimentum urna ante id diam. Nam sed placerat urna. Phasellus est nisi, commodo at diam sit amet, pretium maximus diam. Integer dictum ligula dui, vel fermentum arcu efficitur id. Suspendisse potenti. Nunc mollis massa elementum felis laoreet, vel luctus odio ultrices.