

A CyberGIS Enabled Multi-Criteria Spatial Decision Support System: a Case Study on Flood Emergency Management

Zhe Zhang (Texas A&M University); Hao Hu (University of Illinois at Urbana-Champaign); Dandong Yin (University of Illinois at Urbana-Champaign); Shakil Kashem (University of Illinois at Urbana-Champaign); Ruopu Li, (Southern Illinois University); Heng Cai (Louisiana State University); Dylan Perkins (University of Wyoming), Shaowen Wang (University of Illinois at Urbana-Champaign) 04.04.2019

Motivations:

- Each type of emergency responder usually responds to a disaster according to its professional responsibilities
- Conflicting objectives
- Various data sources with different formats and scales

Data:

- Census data
- Twitter data
- Flood hazard map
- NOAA storm events database

CyberGIS

CyberGIS is Geographic Information Science and Systems based on advanced cyberinfrastructure.

Cyberinfrastructure includes:

- High-performance computing systems
- Data storage systems
- Advanced instruments
- Data repositories
- Visualization environments
- People
- Linked by high speed networks

Motivation

Concept

Research Questions

Method

Results

Future Work

4

Intelligent Decision Support System - An Expert System Workflow

Turban, E., and Aronson, J., 2000. Decision support systems and intelligent systems. Prentice Hall: Upper Saddle River: New Jersey.

Decision Goal 1: which area should a rescue personnel go to first in order to save more lives?
Decision Goal 2: which area had the most significant economic loss and needs the greatest financial support to recover from a flooding event?

Geospatial Data

——Number of Tweets _____Number of Flood

Social Media Data Analysis

Multi-Criteria Decision Making: Weighted Sum Model

Multi-Criteria Decision Making: TOPSIS Model

User Interface

Single User

A Group of Users

Results

Evaluation Criteria	Decision goal 1	Decision goal 2
Total population	74	83
People over 75 years old	87	70
People without health	60	82
insurance		
People in poverty	63	83
Minority group	60	68
Area median house value	47	66
Education attainment	41	56
Number of children	93	79
People without a vehicle	78	58

Sensitivity Analysis

		(
	Motivation	
	Concept	
	Research Questions	T
		F
	Method	F
		F
	Results	F
		F
	Future Work	E
-		

N

Ρ

Criteria	Objective 1		Objective 2	
	(Rank of Criticality Degrees of		(Rank of Criticality	
	the Criteria)		Degrees of the Criteria)	
	TOPSIS	WSM	TOPSIS	WSM
otal population	3	5	2	5
eople over 75 years old	2	4	5	6
People without health insurance	7	3	6	1
eople in poverty	5	6	3	4
eople in a minority group	6	7	4	7
area median house value	9	9	7	9
ducation attainment	8	8	9	8
lumber of children	4	1	8	2
eople without a vehicle	1	2	1	3

Model Validation

Blocks	WSM Model		TOPSIS Model	
	Objective 1	Objective 2	Objective 1	Objective 2
1	0.1	0	0	0.2
2	0.8	0.8	0.8	0.8
3	0.2	0.1	0.2	0.1
4	0.4	0.5	0.4	0.5
5	0.6	0	0.5	0.1
6	0.2	0.3	0.4	0.4
7	0.8	0.1	0.9	0
8	0.3	0	0.4	0.1
9	0.4	0.1	0.4	0.1
10	0.6	0.5	0.4	0.3
Average Error	0.44 (44%)	0.24 (24%)	0.48 (48%)	0.26 (26%)

Thank You ! Questions ?

Contact: Zhe Zhang <u>zhezhang@tamu.edu</u>