Understand individual mobility and accessibility using smartphone-based activity survey: an object-oriented framework

Ying Song Geography, Environment and Society University of Minnesota – Twin Cities

Yingling Fan Humphrey School of Public Affairs University of Minnesota – Twin Cities

Julian Wolfson Division of Biostatistics, School of Public Health University of Minnesota – Twin Cities

Human Mobility and Accessibility

Movement Types		Temporal	
		Non-recurrent	Recurrent
Spatial	Local	Residential Mobility	Commuting
	Long distance	Migration	Seasonal Work

Sustainable Mobility

(Banister 2008)

- individual schedule
- accessibility to destinations
- multimodal

Individuals' Movement in Urban Environment

Data Collection - Travel Survey

Rich in contents

Retrospective

"Non-spatial"

THENT OF TRANSPOR

Graph Source

UNIVERSITY OF MINNESOTA

Driven to Discover

Place to Place

Individuals' Movement in Urban Environment

Data Collection - Location-Aware Technologies

Massive but Thin

Individuals' Movement in Urban Environment

Data Collection - Smartphone-based Survey Apps

1 🥐 🛍 📗

- ✓ user profile
- ✓ trip purpose
- ✓ travel mode
- ✓ schematic attributes
 - emotion status
 - trip satisfaction
 - estimated costs

Calendar APR - 30 TODAY Inaccurate GPS for 6 min 12:20 PM Eat out 5 min 12:25 PM Wait - Walk 59 min | 1.07 mi | 1.08 mph Leisure and recreation 01:25 PM 53 min 02:18 PM Walk 6 min | 0.41 mi | 3.75 mph 02:25 PM \bigcirc Home 9 min Walk - Bus - Walk 02:34 PM 11 min | 1.49 mi | 7.66 mph 02:45 PM Work 19 hr 1 min 69 0 1 Calendar Summary Settings Map

9 1

¥ 9:04

Objectives

✤ An object-oriented framework

1. Data Management

1.1 Conceptual	data representations
1.2 Logical	data structures
1.3 Physical	data storage, index,

2. Data Analysis

2.1 Partonomy & Taxonomy

2.2 Approaches

- Statistics
- Data Mining

Pyramid Framework

Mennis et al. 2000

Data Component

Lagrangian: GPS-based tracking data

Location a spatial location

<u>Time</u> a timestamp

Theme mobility status (e.g. odometer, speed, energy level...)

Data Component

Eulerian: Smartphone-based activity survey

Location an activity of a trip	ρ
---------------------------------------	---

- **<u>Time</u>** the duration of the activity or trip
- **Theme** experience (e.g. emotion status, trip routes, costs, ...)

✤ Relationship

1.1 Logical: Data Structure

Objects, Attributes and Behaviors (selected)

Knowledge Component

Data		Lagrangian GPS-based tracking data	Eulerian Smartphone-based activity survey
wledge	Partonomy	 space-time locations stops and moves movement trajectories 	 activities and their locations trips and their travel modes individuals with trips and activities
Kno	Taxonomy	<pre>space-time trajectories, each with a sequence of tuple {(x, y, t, {status})}</pre>	Individual participants, each with an ordered series of tuple {(activity/trip, start t, end t, {schematic})}

2.1 Taxonomy & Partonomy

Mobility Patterns

1. Movement parameters

Activity/Trip (A/T)

- {schematic attribute}
- $\{(x, y, t)\}$

UNIVERSITY OF MINNESOTA Driven to Discover²⁰

- Individual group
- Schedule feature
- Activity/Trip type

2.1 Taxonomy & Partonomy

Mobility Patterns

2. Individual Schedule

- {schematic attribute}
- $\{(x, y, t)\}$

Ben-Akava (MIT courses)

Data Mining	Statistics
Explorative – Dig out the data first, discover novel patterns and then make theories.	Confirmative – Provide theory first and then test it using various statistical tools.
Involves Data Cleaning	Statistical methods applied on Clean Data
Usually involves working with large datasets.	Usually involves working with small datasets.
Makes generous use of heuristics think	There is no scope for heuristics think.
Inductive process	Deductive (Does not involve making any predictions)
Numeric and Non-Numeric Data	Numeric Data
Less concerned about data collection.	More concerned about data collection.

https://www.dezyre.com/article/data-mining-vs-statistics-vs-machine-learning/349

2.2 Approaches

1. Statistics

- quantifies data from sample
- estimates population behavior

2. Data mining

- finds out pattern in data

3. Machine learning

- learns from training data
- predicts or estimates future

Bhattacharjee: https://medium.com/technology-nineleaps/popular-machine-learning-algorithms-a 574e 3835e bbsec and the second s

Example Study: subjective wellbeing

The Currency of Life (Krueger et al. 2009)

Economics time use, goods, and utility

- Sychology subjective well- being
- Measure U-Index a misery index of sorts

0. Data and Study Area

- Twin Cities Metro Area
- 373 users
- 1 week period
- 25,699 activities/trips
- 6 emotions, level 1-7
 - Нарру
 - Meaningful
 - Sad
 - Tired
 - Stressful
 - Painful

1.1 Data Representation

Activity Type	Trip Type
Home	Car
Work	Bus
Education	Rail
Personal business	Shuttle
Shop	In vehicle
Eat out	Walk,
Leisure/Recreation	Bike
Other/Unknown	Wait
	Other/Unknown

Schematic Attributes 6 emotions

Нарру	Sad	Stressful
Meaningful	Tired	Painful

(7 levels of strength; average by activity/trip)

GPS tracking data (3 second)

1.2 Data Structure (in process)

Double-linked list

2.1 Analysis – Visual Exploration

1. Emotion status across time

2.1 Analysis – Visual Exploration

2. Emotion status by activity and mode

Mean & Variations

https://plot.ly/~AliSong7/86.embed

2.1 Analysis – Visual Exploration

2.2 Analysis – time series analysis

- (1) Step Patterns Markov models
 - **Continuous-time semi-Markov** jump rate & holding times
 - Hidden Markov chain
 emotions ⇔ activities and modes

- (2) Sequential Patterns Path alignment and clustering
 - One-dimension

behavior or emotion; feature-based clustering

- Multidimension

sequences of tuples (behavior, emotion)

Ying Song yingsong@umn.edu

