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Introduction
• Applications

– Crop insurance
– Supply-chain logistics
– Financial market
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Accurate field-level crop type classification is very important.

Field level classification

Landsat data
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Related Work
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To generate in-season crop type classification is a challenge.

Time-series MODIS 250m Vegetation 
Index (VI)�Wardlow et al., 2007 & 2008�

Cropland Data Layer (CDL)(Boryan et al., 2011) U.S. 
Department of Agriculture (USDA)

Single Spectral Information Spectral plus Temporal Information
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County-level findings

Classification performance as a function of time
Cai, Y., Guan, K., Peng, J., Wang, S., Seifert, C., Wardlow, B., and Li, Z. (2018) “A High-Performance and In-
Season Classification System of Field-Level Crop Types Using Time-Series Landsat Data and a Machine 
Learning Approach”. Remote Sensing of Environment. 210: 35-47
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Crop Classification Model

Model training is computationally intensive.
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131,216 CPU hours in total
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High-Performance Computing Workflow
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ROGER Blue Waters

100 CPUs run in parallel 
for 3 hours for each band

1,800 CPU hours in total
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CyberGIS Supercomputing
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Scale up to IL State
Each scene can be 
processed in parallel

Each field can be 
processed in parallel
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Process Each Sense in Parallel

Key-Value: (FieldID+Date) – Average Reflectance
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Hypothesis: Spatial Impact
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Results at Multiple Scales
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Results for Different Regional Divisions
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Future Work
• Improve the classification accuracy by finding 

the optimized spatial region division
• Extend current work to other years (currently 

focusing on 2016)
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Thanks�
• Comments / Questions? 

• Email: cai25@Illinois.edu
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