A Map Algebra Approach to Analyzing Spatiotemporal Data

Xingong Li1, David Tarboton2, Mike Hodgson3, Shaowen Wang4 and Eric Shook5

1Department of Geography & Atmospheric Science, University of Kansas
2Department of Civil and Environmental Engineering, Utah State University
3Department of Geography, University of South Carolina
4Department of Geography and Geographic Information Science, University of Illinois at Urbana-Champaign
5Department of Geography, Environment, and Society, University of Minnesota
Outline

• Map algebra and its extensions
• Nature of map algebra
• Extension to time series rasters
Tomlin (1990, 2012) organizes raster analysis operations as **local**, **focal**, and **zonal** according to the *spatial scope* of those operations.
Major Extensions to MA

• 2D (pixels/cells) → 3D (voxels/cubes)
• Scalar raster → vector raster
• Feature-based
 – French and Li (2010)
• Flow network (raster & vector)
 – Tarboton and Baker (2008)
 – She & Li (2016)
• Time series of rasters
 – Mennis et al. (2005) and Mennis (2010)
The Nature of Map Algebra

• Simple but powerful approach
 – Primarily way of analyzing raster data
 – Implemented in commercial / open source GIS software and cloud-based geospatial analysis platform

• What’s the nature of map algebra?
 – What kind of computational instrument does MA provide?
Neighborhoods and Zones

• “A neighborhood is a set of locations at specified cartographic distances and/or directions from a given location” (Tomlin, 2012)

• “A zone is the set of data pertaining to a specific geographic conditions. The cartographic form of a zone can be large or small and in one piece or in a number of disconnected fragments.” (Tomlin, 2012)
Zones Are Stored Neighborhoods

- A zone is a neighborhood where all the cells in the zone share exactly the same neighborhood
- The zone raster is a map of neighborhoods
- Zones don’t overlap in space
The Nature of Map Algebra

• Perform an operation within a cell’s neighborhood on a raster

• **Iteration**
 – Perform the operation at each cell (spatialization)
 – Iterate through the cells on a raster

• **Neighborhood**
 – Define the cells related to a cell
 – Represent a certain relationship between a cell and its neighborhood cells

• **Operation**
 – Data manipulations performed on neighborhood cells
Neighborhood

• Neighborhood(cell, otherArgs)
 – cell—currently processed cell
 – otherArgs—additional parameters used to define neighborhood
 – Returns a set of cells called the neighborhood of the cell

• Represents a certain relationship between a cell and its neighborhood cell(s)
 – Link location based relationships

• Examples
 – AdjacentNeighborhood(cell, kernel)
 – DistanceDirectionNeighborhood(cell, distance, direction)
 – NearestNeighbor(cell, featuresRaster)
 – Watershed(cell, flowDirectionRaster)
 – Viewshed(cell, visibleDistance, offset, ...)
Data Manipulation Operation

• Operation(cell, valueRasters, otherArgs)
 – cell—currently processing cell
 – valueRasters—A set of rasters from which values are retrieved
 – otherArgs—Additional parameters used in data manipulation

• Major steps
 – Get the neighborhood cells from Neighborhood() function
 – Retrieve values from valueRasters at neighborhoodCells and/or cell
 – Perform data manipulation
 • location (neighborhoodCells and/or cell)
 • values (at neighborhoodCells and/or cell) retrieved from valueRasters
 – Return a value or a set of values
Link Data by Location

• Link data (raster values) at neighborhood cells and/or cell
 – \(v = f(\text{cell, rasters}) \)
 – Cell and rasters may have different size

• Link data at the cell and at its neighborhood cells
 – Link data through the link in location
 – Link in location defined Neighborhood
Cartographic Modeling “Operations”

- **“Local operations”**—use the cell value at the same location
 - Neighborhood(cell)
 - Returns the cell

- **“Zonal operations”**—use the cell values within the same zone
 - Neighborhood(cell, zoneRaster)
 - Get the value of the cell on zoneRaster
 - Returns the cells with the same value on zoneRaster as neighborhood cells
 - Neighborhood is defined and stored in zoneRaster

- **“Focal operations”**—use the cell values bear a certain distance and/or direction
 - Neighborhood(cell, distance, direction)
 - Returns the cells bearing certain distance and direction from the cell as neighborhood cells
The Nature of Map Algebra

• What does MA offer?
 – A form of convolution?
 – Iteration
 – Neighborhoods

• Reveal emergent spatial patterns/forms by convolution
 – Spatial consequences/effects from local relationships represented by neighborhoods

• Geographical convolution
 – Neighborhood defined in geographical space
 – Convolution on multiple attributes (local neighborhood)
 – Convolution on irregular neighborhoods (watershed) and different neighborhood at different cells

• A computational instrument helps see what we cannot see
 – Explore local relationships and emergent forms
Drainage Networks As an Emergent Form

- Watershed() as the neighborhood
- valueRaster = 1
- Sum the values within a cell’s watershed neighborhood
Map Algebra for Time Series of Rasters

• Perform an operation within a cell’s neighborhood on a time series of rasters

• *Iteration in space and time*
 – Perform the operation at each cell and time
 – Iterate through the cells in space and time

• *Neighborhood in space and time*
 – Define the cells related to a cell in space and time
 – Represent a certain relationship between a cell and its neighborhood cells in space and time

• *Operation*
 – Data manipulations performed on neighborhood cells
Spatiotemporal Neighborhoods

- Neighborhood(tsCell, otherArgs)
 - tsCell—currently processed cell in time and space
 - otherArgs—additional parameters used to define neighborhood
 - Returns a set of cells

- Represents a certain relationship between a tsCell and its neighborhood tsCell(s)
 - Link location and time based relationships

- Examples
 - AdjacentNeighborhood(tsCell, tsKernel)

```
0 1 0
1 1 1
0 1 0

1 1 1
1 1 1
1 1 1

0 1 0
1 1 1
0 1 0
```

```
0 1 0
1 1 1
0 1 0

1 1 1
1 1 1
0 1 0
```

```
0 1 0
1 1 1
0 1 0
```
Watershed as Neighborhood

- Watershed(cell, flowDirectionRaster, flowSpeed)
- It takes time for the water in a cell’s watershed to reach the cell
- Inflow at each cell’s the time of concentration
Spatiotemporal Neighborhoods

- Define neighborhood based on interactions between spatial and temporal component neighborhoods
 - Local spatiotemporal neighborhoods (1)
 - Zonal spatiotemporal neighborhoods (2, 3, 4)
 - Focal spatiotemporal neighborhoods (5, 6, 7, 8, 9)

<table>
<thead>
<tr>
<th>Space</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>local</td>
</tr>
<tr>
<td>local</td>
<td>1</td>
</tr>
<tr>
<td>zonal</td>
<td>3</td>
</tr>
<tr>
<td>focal</td>
<td>7</td>
</tr>
</tbody>
</table>
Data Manipulation Operation

• Operation(tsCell, tsRasters, otherArgs)
 – tsCell—currently processing cell in time and space
 – tsRasters--A set of time series rasters from which values are retrieved
 – otherArgs--Additional parameters used in data manipulation

• Major steps
 – Get the neighborhood tsCells from Neighborhood() function
 – Retrieve values from tsRasters at neighborhood tsCells and/or tsCell
 – Perform data manipulation
 • Location of neighborhood tsCells and/or tsCell)
 • Time of neighborhood tsCells and/or tsCell)
 • Values at neighborhood tsCells and/or tsCell retrieved from tsRasters
 – Return a value or a set of values
Link Data by Location and Time

• Link data (tsRaster values) at neighborhood tsCells and/or tsCell
 – \(v = f(tsCell, tsRasters) \)
 – tsCell and tsRasters may have different spatial and temporal resolutions

• Link data at the tsCell and at its neighborhood tsCells
 – Link data through the link in location and time
 – Link in location and time is defined by Neighborhood

• Time
 – Local vs absolute
 – Circular (days, years)
 – Relationship between time and attribute
Conclusions

• Zones are special neighborhoods
• Map algebra as a computational instrument for geographical convolution
• Extension to analyze time series of rasters
• Future work
 – Vector data model and spatiotemporal vector data
 – Implementation
Questions?

- lixi@ku.edu