

An Effective Pothole Identification and Measurement System Using Mobile Devices

Xiao Li¹, Daniel W. Goldberg^{1,2}, & Da Huo¹

¹Department of Geography, Texas A&M University ²Department of Computer Science and Engineering, Texas A&M University

Potholes cost American drivers over **\$6 billion** dollars per year. Potholes have become a leading cause of car accidents.

- Time-consuming
- Labor-intensive
- Costly

How to identify damaging potholes using mobile device?

New Pothole Detection Framework Threshold + Wavelet Analysis

<u>Reoriented smartphone' axes align with</u> <u>vehicle's axes (ax=0, ay=0, az= -1g m/s²)</u>

$$\alpha = \tan^{-1} \left(a_{y}' / a_{z}' \right) \qquad \beta = \tan^{-1} \left(-a_{x}' / \left(\sqrt{\left(a_{y}' \right)^{2} + \left(a_{z}' \right)^{2}} \right) \right)$$
$$a_{xreor} = c_{\beta} a_{x}' + s_{\beta} s_{\alpha} a_{y}' + c_{\alpha} s_{\beta} a_{z}';$$
$$a_{yreor} = c_{\alpha} a_{y}' - s_{\alpha} a_{z}';$$
$$a_{zreor} = -s_{\beta} a_{x}' + c_{\beta} s_{\alpha} a_{y}' + c_{\beta} c_{\alpha} a_{z}'$$

1. Astarita, V., Caruso, M. V., Danieli, G., Festa, D. C., Giofrè, V. P., Iuele, T., & Vaiana, R. (2012). A Mobile Application for Road Surface Quality Control: UNIquALroad. Procedia - Social and Behavioral Sciences, 54, 1135–1144. <u>https://doi.org/10.1016/j.sbspro.2012.09.828</u>

In order to wipe off the noise from signals and smooth the raw data, a sliding window with a size of 0.5 m is required to applied.

--Large amplitude, short wavelength events in RMS curve

2 sensors:

• GPS Receiver & 3-axis Accelerometer

4 Functions:

- Log Data
- Analysis
- View Files
- Data Uploading

https://youtu.be/ervn5tVb_VU

2-phase Pothole Detection Framework

Phase 1: Mobile-based Threshold Analysis

Phase 2: Wavelet Analysis

File1: Potential Potholes

File2: Raw Data

Wavelet Analysis

Wavelet analysis characterizes the scale-dependent periodicity of a signal. It both reveals the frequency component of the signal and identifies where a certain frequency exists in the spectrum.

Time series signal -> Spatial scale signal

- Estimate pothole size
- Improve accuracy of detection

 $\psi(x) = (\pi b)^{-0.5} e^{2\pi i c x} e^{-\frac{x^2}{b}}$

A **compressed** wavelet corresponds to a small size (high frequency)

A **stretched** wavelet corresponds to a large size (lower frequency)

Continuous wavelet transform (CWT):

$$CWT(a,\tau) = \int_{-\infty}^{\infty} f(x) * \frac{1}{a} \psi^*\left(\frac{t-\tau}{a}\right) dt$$

Wavelet coefficient image after thresholding

Threshold = 17 x average coefficient value

Coverage Rate										
	Positioning Accuracy 5 meters			Positioning Accuracy 10 meters						
	1 Time	5 Times	10 Times	1 Time	5 Time	10 Times				
D_PEAK	12%	21%	26%	29%	40%	42%				
D_DIFF	4%	12%	13%	12%	15%	16%				
D_STEDV	9%	29%	40%	24%	44%	46%				
D_IMPROOVED	25%	40%	47%	35%	56%	66%				

False Positive Rate										
	Positioning Accuracy 5 meters			Positioning Accuracy 10 meters						
	1 Time	5 Times	10 Times	1 Time	5 Time	10 Times				
D_PEAK	38%	30%	30.5%	35%	30.7%	29%				
D_DIFF	50%	37.5%	36%	34%	31.5%	31%				
D_STEDV	48%	42.5%	43%	37%	28%	24%				
D_IMPROOVED	38%	34.5%	33%	24%	33%	22.5%				

IMPROVED

Built-in smartphone sensors can be used to detect potholes.

Damaging potholes can be identify using **Threshold + Wavelet.**

By mining crowd sensed data, a more accurate and reliable result can be achieved.

Q & A

Thank You