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PM, : Pollution & Health Impact

% University at Buffalo The state University of New York

O
€PM25

Combustion particles, organic
HUMAN HAIR compounds, metals, etc.
50-70um

) ) <2.5um (microns) in diameter
(microns) in diameter

o  PM, 5 is associated elevated risk of

<1OW iy e mortality and cardiopulmonary
diseases.

90 um (microns) in diameter

[Source: EPA]
FINE BEACH SAND

Image courtesy of the U.S. EPA

Global annual mean PM, ; for 2016 [Source: WHO, 2016]
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PM, : Pollution in China

China is one of the most populated
and polluted counties.

Spatially and temporally
varying PM, 5 distribution

[Source: CCTV]
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« Ground monitored data are insufficient for predicting spatially and
temporally varying PM, s concentrations at fine resolution.

« Satellite aerosol optical depth (AOD) with broad spatial coverage
can be used to supplement sparse monitoring data.

(Gupta et al. 2006, Hoff and Christopher 2009, Van Donkelaar et al. 2010)
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Major Challenges
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PM2.5

O

in predicting fine scale spatio-temporal PM, : concentrations using
satellite AOD

1. Spatial and temporal heterogeneity in the associations between PM, ; and AOD;
2. Missing AOD issue may lead to biased PM, s-AOD relationships and incomplete

PM, s prediction;

Missing AOD Data in 2016 (%)

AOD-PM, 5 relationship
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1 Modeling associations between PM, ; and AOD

« Account for spatially and temporally variable relationships using:
Linear mixed effect models (LME) (Lee et al. 2011, Kloog et al. 2012)

4 Adjusting sampling bias from missing data in AOD
« Using inverse probability weighting (IPW) (Wooldridge 2007).

1 Obtaining full spatial coverage for PM, - concentration

« Employing stochastic partial differential equations under
integrated nested Laplace approximation (INLA-SPDE) %
(Cameletti et al., 2013)
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We develop a multi-stage spatio-temporal PM,
prediction model to estimate PM, ; values at fine
resolutions in space and time, while accounting for

* the spatially and temporally varying associations
between measured PM, ; and satellite AOD

« the missingness of satellite-derived AOD

O
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Study Area
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Beijing City
35 air pollution monitoring
stations
7Zhangjiakoul B
Surroupdlng Areas_ | %» S
39 stations from 7 cities: Al S
Tianjin, Tangshan, Baoding, Secang A
Chengde, Langfang, “ A
Cangzhou, Zhangjiakou; o
74 monitoring stations in * % ey R
1 Study domain e <35 \
tOtaI In 201 6 Handy ] Beiji:g Urban Area e 35-50 o
] outer Capital Area e &§1-70
0 50 100 200 km [ Ecological Reserved Area ® 71-85 :
s s E e S Bohai Sea ° >86 \\
In accordance with governmental urban planning: 2016-2035 10 ,/’ e



Details of Data Used
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Positive/Negative

Granularity

Category Variables Unit Description
Space Time
Air pollutant observa- PMa s na/ m® N/A Point Daily Hourly monitoring from ground stations
tions
Satellite AOD N/A possitive 3 km*3 km Daily MYD/MOD04_3K (DT and DB product) from
observations MODIS/Aqua & Terra
NDVI N/A Negative 1 km*1 km Monthly MOD13A3 from MODIS/Terra
Boundary  Layer meter Negative 14 km*14 km Daily ECMWF ERA-Interim global reanalysis dataset
Height that has 8 time slots per day (3 hour interval from
Meteorological 0:00-12:00)
conditions Temperature °C Negative Point Daily
Wind Speed m/s Negative Point Daily ; "
Relative Humidity % Negative Point Daily g?tgo?cgieiglg:;gz?
Precipitation mm Negative Point Daily gl
Ground Air Pres- hPa Positive Point Daily
sure
Major Road meter Positive Line N/A Include expressway, national, provincial, county
Length roads and major urban roads
Build-up Land % Positive 30 m*30 m N/A
Farm Land Y% Positive 30 m*30 m N/A
Land use type Forest Land % Negative 30 m*30 m N/A Land use type classification from
Grass Land % Negative 30 m*30 m N/A 30-m resolution Landsat image
Water Body % Negative 30 m*30 m N/A
Bare Land % Positive 30 m*30 m N/A
Elevation meter Negative 90 m*90 m N/A
Total Population person/km? Positive 1 km*1 km N/A

*AOD: Merged product based on Dark Target and Deep Blue algorithms both Terra and Aqua 11
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Merged AOD with a two-step data merging scheme

Percentageof missing AOD Data + Merged Dark Target and Deep Blue

AOD from Terra and Aqua using
Simplified Merge Scheme (SMS)
(Bilal et al., 2017);

A domain wide linear regression
model against merged-AOD from
Aqua and Terra to combine AODs
from both satellites.

* Average missing rate is 61.40% <.
for the study area. ‘

il p_— Y
o o ory ¥ 63 s
AOD Missingness (%) g %
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Statistical Prediction Model
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First Stage:
Use Inverse probability weighting to alleviate
sampling bias caused by the missing AOD values;

|

Second Stage: (adopt weights from stage-1)
Build Linear Mixed Effect Model using PM, s-AOD
collocation pairs and predict PM, 5 levels over
spatial grids with AOD values;

|

Third Stage: (gap-filling, based on stage-1&2)
Utilize INLA-SPDE to predict PM, 5 levels over
areas without AOD retrievals.

Fist Stage

13



First Stage: Inverse probability weighting

p(i, ) °

1n1_p(z_’j) = ao‘l‘;aka(iaj)
N ! (1)
AC i

{Wi(i,7),k =1,...,6} denotes six predictors at grid cell i and day j;
(elevation, BLH, temperature, air pressure, forest cover, subregion class)

14



Second Stage: Linear Mixed Effect (LME) model

8
Y(i,5) = Bo(r,j) + Br(r,5) A, §) + Z B Xm (4, 7) + Zﬁn i)+ €(z, ) (2)

Y(i,j) is observed PM, 5 on station / and day j;
A(i,j) denotes DTB_3K AOD value at grid cell i and day j;
X, (i,j) and Z,(i,j) are spatio-temporal and spatial predictors, respectively;

Bo(fr,j) and 61 (r, ) are intercept and slope that assumed to be region(r)- and day(j)- specific;
Second level linear model: BO (?“,j) = By + Bo (7“) + By (])
Bi(r,j) = pi1+pi(r)+ Bi(7)

[Pu and Yoo (2019)

under revision] 15 /
. 1
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y(i,7) = co +c1y(i, J) +&(4,5) +v(7, ) (3)

y(%, 7) denotes both observed and predicted PM, 5 from previous stages at cell j on day .

y(1, ) is the spatial average (105 km buffer) of PM, 5 values from either ground observation or
the LME predictions surrounding grid cell i on day j;

f(i, j) = af(’i,j — 1) + w(i, j) is a spatio-temporal process (first order autoregressive in time):

w(i, j) captures spatial autocorrelation and is temporally independent, and
it follows a Matérn spatial covariance function.

«
16 b \\
.



M O d e I Val id at i on % University at Buffalo The state University of New York

O

10-Fold Cross Validation (LME model):

R?, RMSE, and MAE

Simple Spatial Validation (INLA-SPDE):

1. For each day, randomly select 20% of collocated grid cells with
ground monitors for validation purpose;
2. Build INLA-SPDE model for each day and predict at PM, 5
concentrations validation stations;
3. Calculate R?, RMSE, and MAE. a
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Summary of the fixed effects for LME model Cross Validation:
— —100
Fixed Effect B (2.5%, 97.5%) t value  p value LG REOR. WIS 8
‘ N T DR S : - PMas(P < 0.01) | N=9710 - 1
R?=0.88 .
Int.erept 3.51 (312 390) 17:57 < 0.001 - = RMSE = 18.67 - 80
AOD 1.23 (0.86, 1.59) 6.58 < 0.001 0.59 1.42 s | MAE=1143
BLH -0.24 (-0.27,-0.21)  -15.95 < 0.001 -0.38 2.43 F Y| y=58+088x : =
temperature 0.03 (-0.02, 0.07) 15.83 < 0.001 -0.10 2.36 o - .- -L,.
humidity 0.16 (0.08, 0.24) 3.80 < 0.001 0.32 2.13 3 e T 60
wind speed  -0.42 (-0.48, -0.36) -14.44 < 0.001 -0.22 1.66 g 87 X
forest -0.07 (-0.08, -0.06) -16.15 < 0.001 -0.23 i 3
build-up 0.08 (-0.09, -0.06)  -11.80 < 0.001 -0.08 1.59 T _ -
= 20
Role of IPW: :
« Mean PM, ; predictions with IPW = 60.43 ug/m?3 versus ° ' ' ' °
. ' 0 100 200 300 400 500
without IPW = 57.96 ug/m?3); Gound PM, , observations
« LME model with IPW reduced the CV-RMSE by 1.75 ug/m3. R
19 /’ y Y



INLA-SPDE: On AOD-missing cases (Gap-filling)

Parameter estimates of INLA-SPDE model

Model Parameter Mean SD Quantiles

2.5% 50% 97.5%
Interept 3.63 0.83 1.96 3.63 5.28
Mean PMs 5 0.66 0.04 0.59 0.66 0.73
03 -0.02 0.00 0.01 0.02 0.03
o2 2.34 0.52 1.42 2.34 3.38
a 0.91 0.02 0.87 0.91 0.93
K 314.71 21.98 263.95 302.15 346.79

» Presence of substantial temporal and spatial
autocorrelation of PM, 5 concentrations;

« INLA-SPDE was capable to accurately capture the
complex spatio-temporal dynamics of PM, 5.

Model-Predicteded PM, .

500

400

300

200

Out-of-sample Validation

N = 5096

R?=0.93

RMSE = 15.56 e @
1 MAE = 9.64 L

y = 3.00 + 0.94x . N

1

7100

80

60

I T I
0 100 200 300 400 500
Gound PM, . observations

20 ’

40

20



PM2.5 Estimates: (LME + INLA-SPDE)
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Daily prediction: (January 14th, 2016)
* Heavy pollution levels in the southern areas;
« Higher prediction uncertainty (> 80 pg/m3) over areas farther away
from monitoring stations;
LME predictions Gap-filling with INLA-SPDE Prediction uncertainty (95% ClI)
| _— (b) (©)
§64% Missing. ) " | 95% Credible
g Daily PM, , Interval
, (ng/m’) (ug/m?’)
I s-35 -0
I 35 -5 B 30-46
B 55- 76 [ 47-66
B 77-97 [er-er
o [ ]98-121 [ Jes-111
[ 1122-145 B 112- 134
Y, | [ 146 - 166 I 13- 60 Q
o [ 167- 186 B 61190 e 3
4 - 187 - 209 - 191-232 \\\
B 210-272 B 2:: - 300 N
21 I” / \\
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Annual average:

——— In the range of 28.63 to 104.30 pyg/m3
(ngim®) with the mean of 61.04 ug/m3;

B 230

Bl <044 o Most of the study area (about 99 %)

:2 exceeded the annual Level-2 standard

63 (35 pg/m3) according to the Chinese
=70 National Ambient Air Quality Standard.
-76

- 82

-89

-105

o Monitors
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The day- and region-specific LME model captures the spatially and temporally
varying relationships between ground measured PM, ; and satellite AOD;

IPW is a simple and effective method to adjust uneven sampling problems
caused by missing data;

INLA-SPDE effectively captures complex space-time dynamics of PM, = while
offers a computationally efficient support for model inference;

The extensive daily PM, 5 estimates with quantified uncertainty can be used to
improve our understanding of the regional pollution processes.

AN
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Change-of-support problems in data aggregation process;
Additional prediction uncertainty by using the multi-stage model,;

The data-intensive method has limited applicability.
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