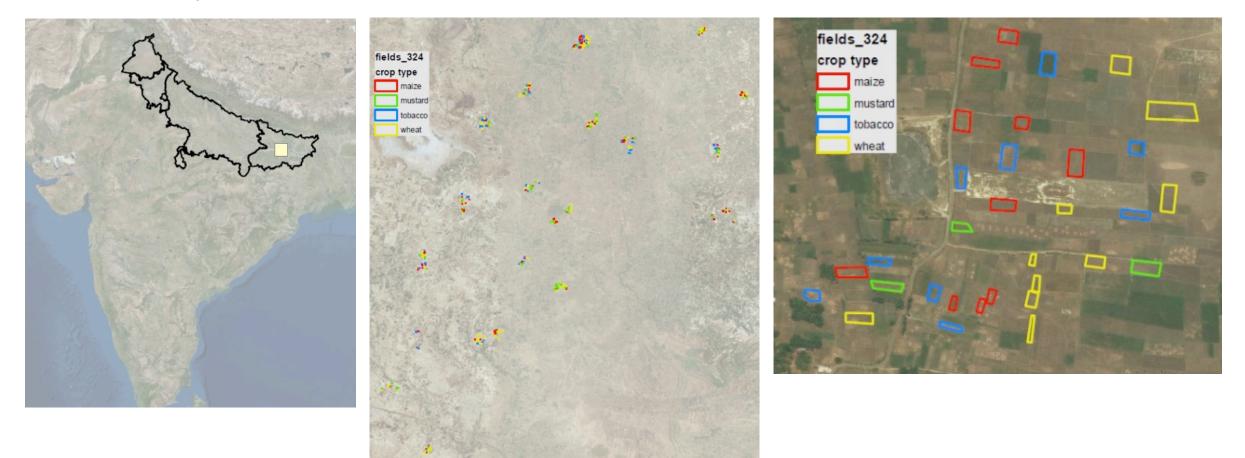
Crop identification in smallholder farms using machine learning & multisensor satellite data


Preeti Rao¹, Meha Jain¹, Balwinder Singh², Amit Srivastava²

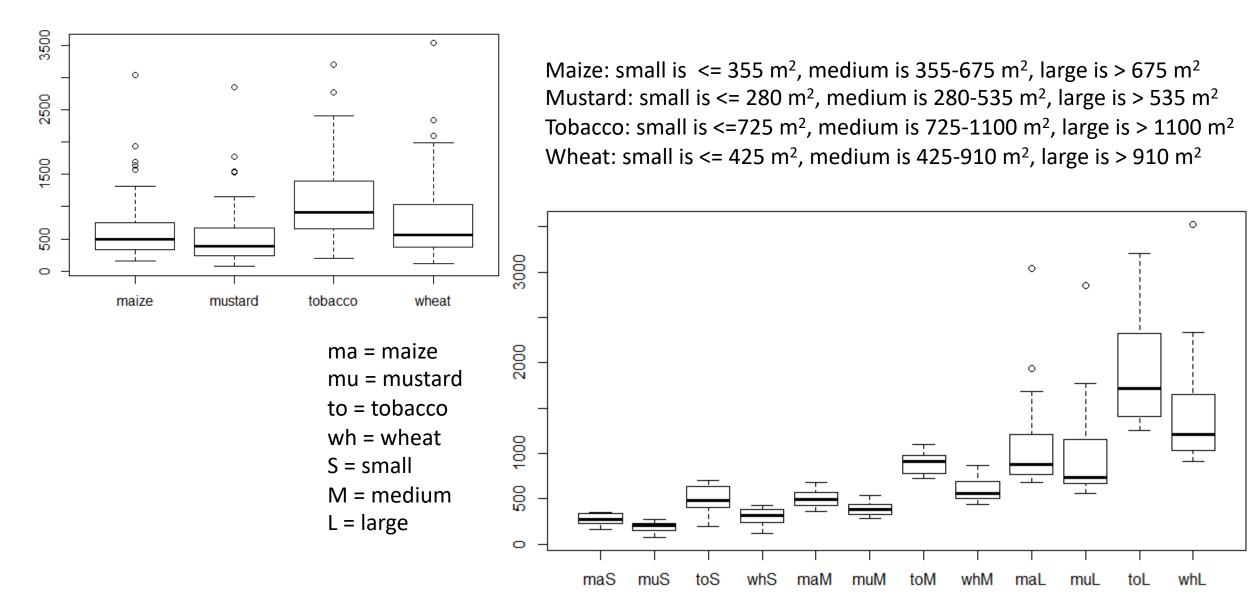
1: University of Michigan Ann Arbor

2: CIMMYT-India (International Maize & Wheat Improvement Center)

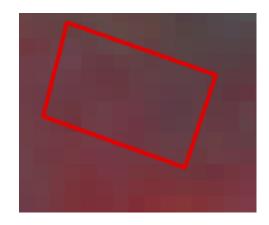
Abstract: Smallholder farming systems in the Indo-Gangetic Plains (IGP) are a major part of the rice-wheat production belt of India. Identifying the crop types across the entire IGP provides a critical dataset to help understand cropping patterns, crop yield intensities, and farmer adaptations to climate change. Our study area is a 20 x 20 km area in Eastern IGP where we collected crop type information for four major crops (maize, mustard, tobacco and wheat) during the winter growing season of 2016-17. The mean farm size in our sampled dataset of 324 fields is 745 m² with 64% of the fields smaller than the mean size. We compare the performance of three machine learning algorithms, Random Forests (RF), Support Vector Machines (SVM) and Artificial Neural Networks (ANN) to develop an ensemble classifier. We apply this ensemble to multi-sensor high-resolution optical (Sentinel-2 and Planet) and radar (Sentinel-1) satellite data to identify the four major crop types in our study area. We identify the critical number and timing of images essential for high classification accuracies. These learnings will be applied towards multi-temporal crop type classification in the entire IGP region.

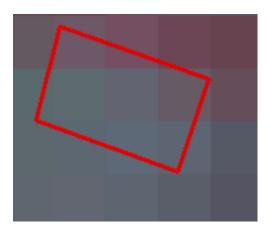
Study area & smallholder farms

Indo-Gangetic Plains (rice-wheat belt) of India – Vaishali District in Bihar Smallholder farms with diverse cropping patterns Winter growing season – Nov 2016 to April 2017


Field and satellite data

- 324 field polygons for 4 major crop types,
- Temporal satellite data from 3 sensors:
 - Planet = 40 bands [4 images * (4 bands + 6 indices)]
 - Sentinel-2 = 102 bands [6 images * (10 bands + 7 indices)]
 - Sentinel-1 = 60 bands [15 images * (2 bands + 2 indices)]
- R-package: Caret library


Crop type	field poly (n=324)
Maize	81
Mustard	65
Торассо	58
Wheat	120


Satellite data	Image dates (mmdd)
Planet SR (bands BGRN, indices G-B NDVI, G-R NDVI, NDVI, PSRI, NPCI)	1115, 0218, 0320, 0409
Sentinel-2 SR (B2-B12, indices GCVI, NDVI, G-B NDVI, NDTI, PSRI, NPCI)	1119, 1129, 0118, 0207, 0217, 0309
Sentinel-1 (VV, VH, CR, BSR)	1120, 1202, 1214, 1226, 0107, 0119, 0209, 0212, 0221, 0224, 0305, 0308, 0317, 0320, 0401

Smallholder farm characteristics

Field poly vs. Planet (3 m) & Sentinel (10 m)

FieldArea_ m2	Min	Max	Mean	Total Area	# poly	3m pix in min poly	10m pix in min poly
Maize	162	3041	621	50,335	81	18	1.62
Mustard	74	2856	527	34,282	65	8	0.74
Торассо	195	3203	1090	63,217	58	22	1.95
Wheat	117	3528	774	92,859	120	13	1.17
Total	74	3528	743	240,693	324		

Classification steps


- Equal data samples from each of the four major crop types were collected from 70% training and 30% test polygons
- Basic feature selection: removed variables with correlation > 0.9
- Data was sampled using the 10-fold cross-validation repeated 10 times and the best model evaluated on the basis of the Kappa statistic.
- For ANN, classification accuracy increased when the 3-sensor data was scaled (scaling didn't make any difference for the other two models)
- For SVM, radial kernel performed better on the 3-sensor data
- RF performed best for mtry = 12 (sqrt of # variables) & ntree = 500

Training & test data

Training polygons (70%) maize mustard tobacco wheat 57 46 41 84 □ # Test polygons (30%) maize mustard tobacco wheat 24 19 17 36 At 3 m pixel locations: Planet + Sentinel-2 + Sentinel-1 band values

□ Total pixels from each crop type (2040 pixels in mustard class)

Feature selection

- Top 15 variables after selecting features with correlation < 0.9
- 142 of 202 remained after removing the most highly correlated variables
- Final model runs with these 142 variables

Comparison of classification accuracies

Final model runs with optimized parameters: overall accuracy (kappa coefficient) for different combinations of satellite sensors and machine learning algorithms

	Accuracy (Kappa)						
	Planet	Planet + Sentinel-2	Planet + Sentinel-2 + Sentinel-1				
Random Forest (RF)	0.813 (0.732)	0.806 (0.721)	0.850 (0.786)				
Support Vector Machine (SVM)	0.781 (0.692)	0.822 (0.750)	0.859 (0.799)				
Artificial Neural Network (ANN)	0.795 (0.710)	0.759 (0.660)	0.840 (0.775)				

F1 score	Maize	Mustard	Торассо	Wheat
RF	0.872	0.675	0.867	0.891
SVM	0.859	0.686	0.894	0.898
ANN	0.807	0.707	0.876	0.868

F1 score = (2*prodAcc*userAcc)/(prodAcc + userAcc)

Optimum image analysis

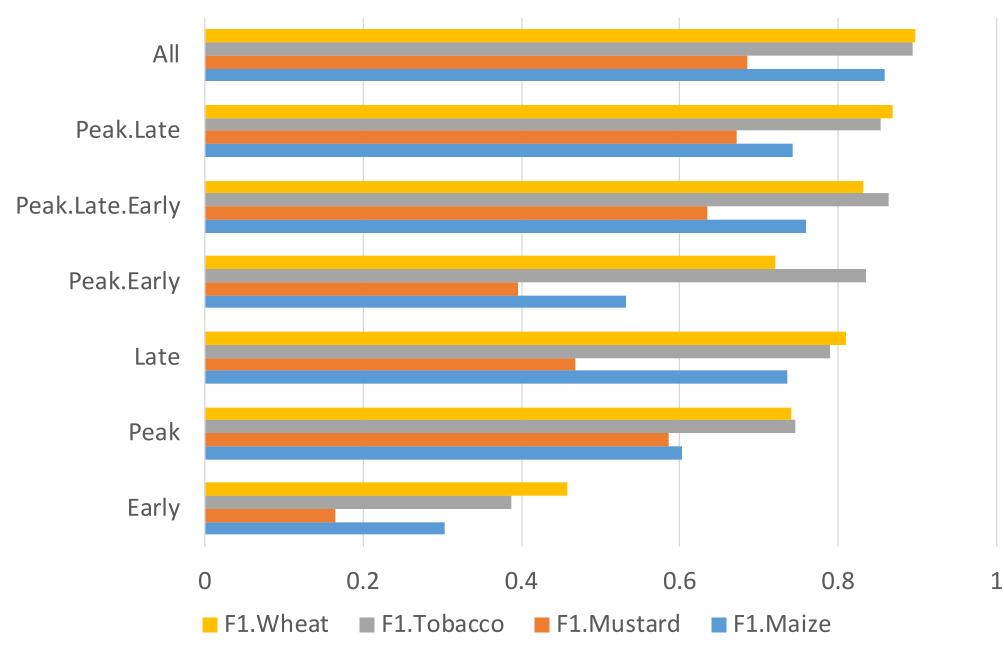
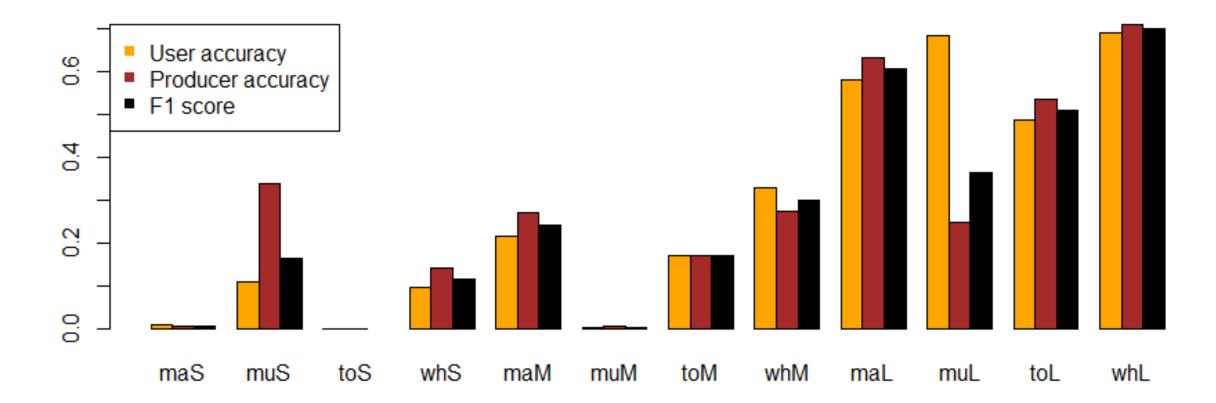

- What is the best crop stage & min # images required for most accurate classification results
- SVM (best algorithm of the three) used to test the classification accuracies

Image date	Peak (mid Feb)	Late (late Mar/ early Apr)	Early (late Nov/ early Dec)	P + L	P + E	P + L + E
Planet	0218	<u>0320</u> , 0409	1115	0218 +0320	0218 +1115	0218 +0320 +1115
Sen-2	0217	0309	1119, <u>1129</u>	+0217 +0309 + 0212	+0217 +1129 + 0212	+0217 +0309 +1129 +0212 +0320
Sen-1	0212	0317, <u>0320</u> , 0401	1120, <u>1202</u> , 1214	+0212	+1202	+0212 +0320 +1202

Optimum images: classification accuracies

SVM		Early	Peak	Late	Peak. Early	Peak. Late. Early	Peak. Late	All
Overall a (kappa)	accuracy	0.370 (0.105)	0.690 (0.571)	0.740 (0.635)	0.664 (0.521)	0.798 (0.713)	0.811 (0.733)	0.859 (0.799)
User accu racy	Maize Mustard Tobacco Wheat	0.265 0.214 0.389 0.456	0.590 0.563 0.672 0.822	0.670 0.541 0.746 0.839	0.498 0.481 0.819 0.708	0.725 0.769 0.821 0.827	0.672 0.777 0.843 0.877	0.818 0.772 0.874 0.895
Prod ucer accu racy	Maize Mustard Tobacco Wheat	0.354 0.134 0.385 0.461	0.617 0.610 0.837 0.673	0.816 0.413 0.839 0.782	0.571 0.335 0.851 0.732	0.799 0.540 0.910 0.838	0.829 0.593 0.864 0.860	0.905 0.617 0.915 0.902
F1 score	Maize Mustard Tobacco Wheat	0.303 0.165 0.387 0.458	0.603 0.586 0.745 0.740	0.736 0.468 0.790 0.809	0.532 0.395 0.835 0.720	0.760 0.634 0.863 0.832	0.742 0.672 0.853 0.868	0.859 0.686 0.894 0.898

Optimum timing of images



Farm size & classification accuracies

Maize: small is <= 355 m², medium is 355-675 m², large is > 675 m² Mustard: small is <= 280 m², medium is 280-535 m², large is > 535 m² Tobacco: small is <=725 m², medium is 725-1100 m², large is > 1100 m² Wheat: small is <= 425 m², medium is 425-910 m², large is > 910 m²

# Fields	Maize	Mustard	Tobacco	Wheat
Small	27	21	19	40
Medium	27	22	20	39
Large	27	22	19	41

Farm size & classification accuracies

Large size fields of wheat, maize, tobacco perform the best
Medium fields of wheat, maize and tobacco – next best
Small size fields – only mustard does better than others

Conclusions

- SVM performs better than RF & ANN
- Combination of satellite data from the three sensors is the best
- Single image from each of the 3 sensors from late growing season & a combination of single peak & late image from each sensor classify the crop types almost as well as the complete dataset.
- It is difficult to classify small fields (300 700 m²)
- Some crops are easier to identify (larger sample size or pheonology)
- Next step is to apply this SVM model or an ensemble of all three models to the larger IGP region.

Questions? Suggestions?