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Roadmap

« Setting: issues & reasons of the study
« Scale & spatial heterogeneity

« Scale in spatial data mining

» Scale-based spatial clustering

* Discussion
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Big Data

« Large size,

* Incongruency,

* Incompleteness,
« Complexity,

« Multiplicity of scales, and

« Heterogenelity of information-
generating sources.
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See “Scale” via Spatial Heterogeneity
* Are heterogeneity and variability the same?
* Shifts in scale may produce more than averages or

constants; they may make homogeneity out of

heterogeneity and vice versa.

1 " I 1 1 y 3 i b
. . . s M Af , M WRlIRSITY OF
- 04 N A ! v U K |
a5 L L . ! . :
1 " o 4 -
i | y U v ) |
v R BT T R ) o4 @ o ow T -] ] R ] R T R W @ oo e W @ e o e WO @ o wm o — '‘OXVILLE
oo s mme s e m e RO BN AL I LN EN D EENEEENAARANARRAEEERRERERY



See “Scale” via Spatial Heterogeneity

* Functional heterogeneity vs. observed heterogeneity.
* Heterogeneity may involve deterministic, random, and

chaotic variations.

* Continuous heterogeneity vs. patchy heterogeneity.




See “Scale” via Spatial Heterogeneity

* Arbitrary measures of heterogeneity are tempting
and popular, but their ability to reflect the relevant

properties of the system of interest is unclear and

guestionable.




Case study: Mining ecosystem service data

EnviroAtlas: more than 200 metrics of ecosystem
services for ~83,000 HUC-12 units.

» Scale and analyze all metrics (with suitable multivariate

methods).
 Case closed.

* Wait a minute!

 Are data across space compatible?
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Approaches to multiscale analysis

 Indirect approach
» Designed for single-scale analysis
 Statistical measures, spatial indicators
* Realized by sampling data at different scales
 Direct approach
« Semivariance analysis, wavelet analysis, spectral
analysis, fractal analysis, lacunarity analysis, blocking

guadrat analysis
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Multi-level wavelet analysis

« Wavelet analysis (in a nutshell)

» Time series data example: to decompose signals
(i.e., amplitudes) into different temporal resolutions
(i.e., frequency; diurnal, daily, monthly, seasonal,
decadal, etc.), and how those patterns change over
time.

« Spatial data: to decompose signals (i.e., magnitudes)
into different spatial resolutions (i.e., local, sub-
regional, regional, etc.), and how those patterns

change over space.
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Multi-level wavelet analysis

« Haar wavelet: a sequence of rescaled "square-

shaped" functions
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« Multi-level discrete wavelet analysis
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Multi-level wavelet analysis on ecosystem services data

« Example: percent developed land
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variances

10

100

o
o
T

Wavelet variance - Percent developed land

1 2 3 4 5 6 7 8 9 10
Level (distance=2(level+1) km)
Wavelet variance - Percent developed land

4 5 6 7
Level (distance=2‘level+1) km)

HE UNIVERSITY OF

ENNESSEE i §

KNOXVILLE



Multi-level wavelet analysis on ecosystem services data

Example: Percent forest
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Multi-level wavelet analysis on ecosystem services data

« Putting things together

Wavelet variance - Percent forest
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Data mining: looking for pattern

K-mean clustering: percent forest and percent developed
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Data mining: looking for pattern

« Spatial-constraint clustering: percent forest and percent developed




Data mining: looking for pattern

Scale-based clustering (with A4): percent forest and percent

developed
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Data mining: looking for pattern

» Scale-based clustering (with D1): percent forest and percent
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Discussion

« Scale multiplicity of spatial data exists.

« Scale multiplicity of natural landscapes/ phenomena
are different from those of socioeconomic
landscapes/phenomena.

« Care is needed in putting data which are different
from in each other in term of scale multiplicity into

the same (data mining) analysis.
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Discussion
 Implications:

» Scale of observation significantly influences what is to
be observed and vice versa.

» Big data need to be treated in a multiple-scaled or
hierarchically structured fashion.

» Meaningful spatial data mining on big data requires a
multiple-scale characterization of spatial pattern and
processes.

« Data mining methods developed for big data need to

scale in consideration, otherwise .....
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Thank you for your time!

Q&A
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