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Newcastle upon Tyne as a Smart City



Urban Observatory

http://newcastle.urbanobservatory.ac.uk/

http://3d.usb.urbanobservatory.ac.uk/


Traffic Observation

http://api.newcastle.urbanobservatory.ac.uk/camera


Air Quality Monitoring

http://sensemystreet.uk/
http://3d.usb.urbanobservatory.ac.uk/
http://3d.newcastle.urbanobservatory.ac.uk/
http://newcastle.urbanobservatory.ac.uk/


Real-Time Sewage Level Gauge



Real-Time Data Streaming

• Sampling Interval: 5min

• Format: JSON

• Size: ~5MB

• We need to extract sewage 

level data

• Periodic model training/re-

training (24 hours)



Recurrent Neural Network

• Proposed for Natural Language Processing (Mikolov et al., 

2010)

• Hidden “memory” (hi) to capture previous information (Lecun

et al., 2015)

• Very successful in Time Series Analysis (Graves, 2013)



Long-Short Term Memory (LSTM)

• Using a memory cell (C), an input gate (I), an output gate 
(O) and a forget gate (F).

• LSTM could handle exploding and vanishing gradient 
problems that can be encountered when training traditional 
RNN (Gers et al., 1999)



Experiment Implementation 

• Four layers of LSTM (Xingjian et al., 2015)

• Training start from October 2018-January 2019

• Testing with real-time data collected in February and March 

2019

• Tensorflow + Keras + Kafka + Apache Storm (Xing and Sieber, 

2016)



The Initial Result 



Integrating Traffic and Weather Data 



Encoder + LSTM

• Convolutional Neural Network for High-Order Feature 

Extraction (Cui et al., 2016)

• Spatial Pyramid Pooling (+) (He et al., 2015)

• Reuse previous LSTM network 



The Improvement



Conclusion

• Smart City = IoT + Deep Learning?

• Real-time and Burstiness

• It is still very hard to predict extreme situations 

• Integrating various datasets may help, if we have a 

good understanding of them

• Hyper-Parameter Tuning with geospatial knowledge 

(Greff et al., 2017)

• More challenging when integrated with imagery data 

analysis (Zhu et al., 2017)
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Call for Papers: Urban Deep Learning

https://www.mdpi.com/journal/r

emotesensing/special_issues/urb

an_deeplearning



Topics in Urban Deep Learning

• New deep neural network models for urban scene 
classification;

• 3D deep learning for urban scene understanding;

• New recurrent neural network algorithms for urban change 
detection;

• Advanced training and testing of deep learning methods;

• Real-time urban sensing data analytics using deep learning 
algorithms;

• Generative adversarial network for remote sensing data 
fusion;

• Innovative reinforcement learning algorithms for 
transportation management.



GISRUK 2019 @ Newcastle



Thank you!

jin.xing@newcastle.ac.uk

@McGillCyberInf

Call for Papers: 
https://www.mdpi.com/journal/remotesen
sing/special_issues/urban_deeplearning

mailto:jin.xing@newcastle.ac.uk
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