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MapReduce

* A processing technique and a program model for distributed
computing based on Java.

Allows massive scalability cross hundreds or thousands of

servers in a Hadoop cluster.
MAP

Mappers

Reducers

Big Data
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Why hotspots?

. ~

* Areas of space with
unusually high 2 e
incidence of events

* Spatial Hotspots Epidemiology hotspots  crash hotspots

Terrorism hotspots
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Hotspot Analysis

* Hotspot analysis — spatial
clustering/spatial autocorrelation

e Research question - How to know
where interesting events (hotspots)
occur with overwhelming data
compilation?

 Existing approaches

 Moran’s | (Moran 1948), Getis-Ord
general G (Getis & Ord 1992)

* Getis-Ord Gi* (Getis 2007), Anselin’s LISA
(Anselin 1995)

 Scan Statistics (Kulldorff 1997, 2006)
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State-of-the-art: Scan Statistics

* |dentifies clusters of high activity using spatiotemporal data
* Good for discrete localized outbreaks

e Can be combined with others for multivariate analysis

* Requires pre-defined boundaries

* Resultant hotspots w/ artificial shape may include non-hotspots
(high false positive errors)

Terrorism activities hotspots in
Hotspot analysis in public Philippines Mar — Jun 2002,
health, source: ESRI sources (Gao, et.al, 2013)
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Our Approach




Our Hotspots Detection Algorithm

* Aim:
* Unsupervised
* Absence of geographical boundary
* [dentifies compact hotspots

* Approach:
* Density-based
* Polygon propagation

* Details: Katragadda et. al, 2018




Our Hotspots Detection Algorithm

Given a set of points
* |dentify a triangle: density > t

* Add nearest point to
polygon: density > t

* Until no more points can
be added

* Until no more triangles can be
formed

* For each Polygon

* Calculate log-Likelihood
value

* If log-likelihood value > t2,
it is categorized as hotspot
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Our Hotspots Detection Algorithm
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Challenge of Polygon Propagation based
Methods

* Creating a patch of areas covering the whole map
v’ Using scan statistics to identify most likely cluster

* Polygons may spread to a large area W/O constraints
v' A compactness parameter introduced to limit the size of the cluster
v oy Area(P) P — the polygon, E- the smallest enclosing eclipse
Area(E) compasses all the points in polygon P
v Prioritize polygon propagate within the encompassing eclipse

* Polygon propagation is expensive, complexity — O(N3logN)

v All possible polygons are pre-computed by Delaunay Triangulation
(O(NlogN))

v Distributed polygon propagation
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Our Hotspots Detection Algorithm —
MapReduce

Mapper Reducer
Iterations

- Compute'to add re-compute
Partition 1 g set of points to

polygon the polygon

{ Compute to add re-compute Finalize
R N set of points to
solygon the polygon polygons
/

Compute to add a_combute
g setof pointsto > 1
polygon NOTYSU
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MapReduce Version of Algorithm

Given a set of input points

Mapper
Create/extend polygons:
density of polygon>tl
Reducer
re-compute the polygons

Repeat until stabilization

For each Polygon
Calculate log-Likelihood
value
If log-likelihood value > t2, it
is a hotspot

Y 4B
“‘/ V D Center for Visual &
\ Decision Informatics
\\17-7//



MapReduce Version of Algorithm

Given a set of input points

Mapper
Create/extend polygons:
density of polygon>tl
Reducer M=
re-compute the polygons '

Repeat until stabilization ‘ | 4

For each Polygon
Calculate log-Likelihood
value
If log-likelihood value > t2, it :
is a hotspot

/ .
“‘/ V D Center for Visual &
\ Decision Informatics
\\7{/



MapReduce Version of Algorithm

Given a set of input points
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Run Time Comparison

e Serial * Hadoop Implementation
Implementation (3-node cluster of)
* CPU: Quad-Core 2.5 — CPU: Dual Six-Core 2.0
GHz GHz
* 8 GB RAM — 16 GB RAM

* 9 hours 32 minutes ,
— 48 minutes

Run time reduced about 90%!
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Hotspots Detection on a Simulated
Dataset

Original data Circular scan statistics

\ Elliptical scan statistics Our method
V D Center for Visual &
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Hotspots Detection on Smiley Dataset

Original data Circular scan statistics Our method

Significant reduction in false positives — a major advantage
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Test on Public Health Dataset

New York Breast Cancer Data

* Sources: NYSDH 2015,
Bosceo et. al, 2016

* Breast cancer cases
aggregated to census block

* 13,848 points (centroid of a ! |
census block), representing
72,926 patients and a
population of 27, 820, 632 in hy
2009 in the State of New
York
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Test on Public Health Dataset
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Conclusion

* Polygon propagation (PP) can detect better heterogeneous
cluster that are irregularly shaped

* PP detects more compact hotspots area (has less false positive
errors) than the state-of-the-art Scan Statistics

 MapReduce based PP significantly outperforms the traditional
Scan Statistics and PP algorithms, make it suitable for large-
scale spatial hotspots detection

* Future work
 |dentify better ways to calculate the stability of the detected hotspot
* Reduce the computational time of the greedy search
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