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Location-based Social Media

e LBSM data are increasingly used to model
population dynamics

e Pros e Cons
o Large volume o Sampling bias
o high resolution o Uncertainties:
o real-time updates m Position
O easy accessibility s Continuity
e m Route



Sparsity and Uncertainty

® Average tweeting frequency is relatively low, as
compared with typical GPS-tracking data

o The average spatiotemporal density of raw data records
is quite sparse, and not evenly distributed

o Inferring user activities between LBSM records is
important for population modeling

o A uncertainty-aware solution is needed
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Number of Tweets at 00:00
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https://docs.google.com/file/d/1XBeOUfTwJwqOcx1T95zQaTNLb3SfjbrK/preview

Number of Tweets at 15:00
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Number of Tweets at 03:00

2,860,000

:101

2,850,000

10°

57,000 58,000



Find the Missing Population

e Location inference based on individual

trajectories

o Given a series of observations [(time, loc), ... ] of a
person, infer the person's location(s) between
observations

e The space-time prism (STP)

o A person's possible activity space between two
observation anchors



A STP Diagram of Measuring Activity Space Between Observations




Probability Representation

e 2D Gaussian distribution as the basic units

o Describe the possible location of any individual at a given

moment
m Center location as the mean value
m Radius as 20 (95% confidence range)

o Mitigate usage bias
m Frequent users and infrequent users are calibrated to the same
temporal scale

o Accommodate GPS precision
m Apply a 5m-radius Gaussian distribution on the observation points
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Assumptions of the STP

e Maximum Radius of the STP
o Upper bound: max speed

o Lower bound: space/time distance
o Reasonable estimate: de-facto speed

o Validity of the STP

o A person could be “distracted” between tweets, visiting
another place without tweeting

o The “continuity” between two tweets needs to be
measured



Time-based Continuity Estimation

e Consider the time gap between two tweets

o Gap duration
m 2pm-3pmVS.2pm-8pm
m 12pm-12 pm

o (Gap occasion
m 12am-6amV.S.6am-12 pm

e Intuition

Probability of < Amount of “human ;2
distraction activity”
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A temporal activity curve based on the total number
of tweets in every minute of the day
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Amount of activities as proportion of tweets
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Continuity Confidence

Given the total number of LBSM records as NN, and number of records
between ¢, and t, in the dataset as N(t;,t,), the probability of any

hidden distraction between ¢; and t, is approximated as

N(ty,t
H{ty, ;) ~ Tt

N

Then, the continuity confidence of the corresponding STP is defined as:

N(t,t
C(STPtl,tz) — 1 — H(tl,t2) ~ ]. - %



Continuity confidence as a function of the start time and time gap
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Conceptual Workflow

e Obtain user trajectories

e Define continuity confidence

® Build space-time prism

® Interpolate individual Gaussians at every minute

® Aggregate minute-Gaussians to mixed-Gaussians at
each hour

e Sum and normalize the whole population
distribution



The workflow to draw population samples from raw tweets
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Study Area and Data

e 5.1 million geo-tagged tweets collected via Twitter APl in
the city of Miami from Jan. 1st, 2014 to Dec. 31st, 2014

® The specific spatial extent of the study area is 80.119601°
W to 80.316665°W, and 25.703935°N to 25.858107° N

® In total, 4.1 million STPs are constructed, and 424 millions
of Gaussian distribution are interpolated for aggregation

e The final result, 24 probability density distributions are
generated for each hour of the day from 0:00 to 23:00,
with a spatial resolution of 30x30 square meter
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Population probability difference between 03:00 and 15:00 le—8
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Population probability density at 00:00
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https://docs.google.com/file/d/11X9Y09mZhrdfcE9vHzCApimVbYW36KrB/preview

Conclusion

e Mitigate some drawbacks of LBSM data
o Continuity
O Sparsity

e Demonstrate the feasibility of deriving
population distribution at fine spatiotemporal
scales
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Future Work

e Data refining
o Advanced methods to filter robots/errors

e Validation
o With other models or authoritative data

® Parameter calibration

o Seasonal dynamics
o Weekdays v.s. weekends

e Applications
O Integration with census data
o Input to agent-based models
o Temporal activity curve and place type
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Thanks!

« Comments/Questions?

e Email: dyind@illinois.edu
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