
.
Chuanrong Zhang, Tian Zhao and Weidong Li

Department of Geography & Center of Environmental Sciences
and Engineering, University of Connecticut, Storrs, USA

Department of Computer Science, University of Wisconsin,
Milwaukee, USA

Optimization techniques for
Improving Geospatial Semantic
Web Query

Geospatial Semantic Web

◆ Geospatial databases created from a variety of
sources have syntactic, structural, and semantic
heterogeneity problems.

◆ Geospatial web services have been developed to
provide access to heterogeneous geographic
information on the Internet.

Geospatial Semantic Web

◆ By associating spatial data content from the Web
with ontologies (that would supply context and
meaning), the vision of Geospatial Semantic Web
is to extract geospatial knowledge from the Web
regardless of geospatial data formats or sources;
thus it can facilitate transparent geospatial data
exchange, sharing, and query.

Introduction

◆ Geospatial Semantic Web promises better retrieval
of geospatial information for the Web.

◆ It also promotes sharing and reuse of spatial data
for a wide variety of applications by using
standardized Semantic Web languages such as
RDF.

◆ The USGS (United States Geological Survey) have
been working on developing ontologies for The
National Map for many years using RDF language.

Introduction

◆ However, representing structured geospatial
data in these languages can result in
inefficient data access.

◆ One of the main obstacles that prevent
efficient and distributed query on geospatial
knowledge base is the lack of indexing on
spatially related data objects.

Introduction

◆ It is possible to recreate indices for RDF objects
with spatial attributes in knowledge bases such as
Parliament and Strabon.

◆ However, pre-computing spatial indices does not
guarantee performance improvement since the
RDF queries are much more flexible than
database queries and it is difficult to predict
which spatial objects should be indexed and how.

Introduction

◆ Geo-SPARQL queries are dominated by
spatial join operations due to the fine-
grained nature of RDF data model.

◆ Lack of spatial indices causes additional
performance problems for Geo-SPARQL
queries.

Introduction
◆ In literature, different approaches have been widely

used for improving spatial joint performance for a
long time.

◆ However, past research on improving query
performance has been centered on offline relational
databases.

◆ Optimizing techniques for offline spatial relational
databases do not specialize on the triple model of
RDF and triple patterns of GeoSPARQL queries.

Introduction

◆ To the best of our knowledge, there are few
studies to explore support efficient spatial RDF
query, which is an important issue for the
development of Geospatial Semantic Web.

Research Objectives
◆ Explore approaches for efficient spatial knowledge

queries of The National Map.
◆ The ultimate goal is to make spatial knowledge

query flexible and efficient so that it can replace the
current ad hoc Web interface of The National Map.

Methods

On-the-Fly Spatial
Indexing

Query Rewriting
Algorithms

Parallel Spatial Join
Algorithms

MapReduce Concept

Data/Task parallelism

Progressive transmission
data over the Web

Cache GPU

Client-side Application server Data servers

Data
server3

Data
server2

Data
server1

Data
server4

Tile-based Rendering

Query rewriting algorithms

◆ To avoid the problems of data replication and
minimize the bulk of transferred data from the
data server, we do not create RDF ontology
instances explicitly.

◆ Instead, we use a query rewriting approach to
enable GeoSPARQL ontology query on spatial
data available from WFS services and data
stored in databases.

Query rewriting algorithms

Input: target query q

A set of inference rules I

For each triple t in q.body

For each inference rule I in I

If there exists a substitution s such that s (i.head) = t

Then replace t in q.body with s (i.body)

End for

End for

Output: q׳ where q׳.body has only triples in RDF mapping

(a)Rewrite GeoSPARQL queries to WFS queries algorithm part
1: apply inference rule to GeoSPARQL query

Query rewriting algorithms
Input: target query q

A set of mapping rules M

Initialize: apply algorithm 1 to q to obtain q׳

Group triples in q׳.body by subject name

Resulting a set of triple groups L

For each triple group t in L

For each mapping rule m inM

If there exists a substitution s such that

s(m.body) contains all triples in t

Then replace t in q׳ with s (m.head)

End for

End for

Output: q׳ where q׳.body contains WFS get Feature requests

(a)Rewrite GeoSPARQL queries to WFS queries algorithm
part 2: query rewriting

Tile-based rendering

◆ Two types of tile-based rendering techniques:
vector tiles and raster tiles.

◆ Use a modified Ramer-Douglas-Peucker
simplification algorithm (Hershberger and
Snoeyink 1992) to recursively find the most
important points in a polyline and discard
unnecessary detail in each tile.

Tile-based rendering

◆ Geometries that are too tiny to be displayed on
any particular zoom level are filtered using the
pre-calculated values.

◆ The bounding box of each geographic feature are
used to make fast clipping.

◆ The well-known Tile Pyramid structure based on
a level-of-detail (LOD) model are adopted for
efficient large map image rendering and fast tile
scheduling.

Cache techniques

◆ In this study the client-side mobile
devices/computers cache the tiles on their sides via
the tile mechanism to reduce the user-perceived
response time and improve user navigation and
query efficiency.

◆ The commonly used tiles are cached in advance.
◆ While a client is viewing one of the commonly used

tiles, the next possible tiles are pre-fetched by the
system using a simple prefetching mechanism.

Cache techniques

◆ Based on the prefetching mechanism, tiles
around the map view extent are requested
from the application/data servers while the
user requests the tiles inside the map view
extent.

◆ Because the tiles that represent the next
navigation/query of the client are already in
the cache, seamless navigation or fast query
can be provided to the client.

Separating spatial query from
non-spatial query

◆ Instead of processing the triple statements of
GeoSPARQL query in sequence, we separate
the triple non-spatial statements from the
filtering statements that involved spatial
computations, which typically are very costly.

◆ This way a smaller set of ontology objects can
be obtained after non-spatial sub-queries so that
their spatial attributes can be cached for
subsequent spatial computation including on-
the-fly spatial indexing and spatial joins.

On-the-fly spatial indexing

◆ Construct spatial indices on-the-fly for the spatial
objects returned from the non-spatial component
of the query.

◆ We employ the R-Tree technique to the on-the-
fly spatial indexing for GeoSPARQL queries in
the system due to simplicity of the R-Tree
structure and its ability to handle spatial objects
efficiently.

Spatial Join Algorithms

◆ The nested-loop join algorithm
◆ The index nested-loop (R-Tree) join

algorithm
◆ The plane sweep join algorithm
◆ The hierarchical traversal join (R-Tree)

algorithm

Flowchart for nested
loop join algorithm

Flowchart for index
nested-loop join algorithm

Flowchart for plane
sweep join algorithm

Flowchart for
hierarchical traversal
join algorithm

Some experimental results

◆ The implemented prototype can be accessible
from the website:
http://tianpar.cs.uwm.edu:8080/nh-hydro/
http://tianpar.cs.uwm.edu:8080/usgs/

http://tianpar.cs.uwm.edu:8080/nh-hydro/
http://tianpar.cs.uwm.edu:8080/usgs/

Table 1. The total number of features for each of the involved
spatial data layers.

Layers Number of features

Flow_line 10654

Water_body 4995

Streets 3449

Roads 1537

Places 54

We conducted six GeoSPARQL queries on the client side computer as listed below:
1. Select flow line near water body, which involves 4995 waterbody polygon
features and 10654 flowline line features for the spatial joint query after the initial
filtering using non-spatial query.
2. Select stream or river near lake or pond, which involves 2522 waterbody
polygon features and 4818 flowline features for the spatial joint query after the
initial filtering using non-spatial query.
3. Select streets near high schools, which involves 9 school point features and
3449 street line features for the spatial joint query after the initial filtering using
non-spatial query.
4. Select streets near “Fair Haven School” and less than 500 feet, which
involves 1 school point feature and 2481 street line features for the spatial joint
query after the initial filtering using non-spatial query.
5. Select roads near middle schools, which involves 4 school point features
and 1537 road line features for the spatial joint query after the initial filtering using
non-spatial query.
6. Select high schools near state highways, which involves 9 school point
features and 29 highway line features for the spatial joint query after the initial
filtering using non-spatial query.

Nested Loop
algorithm

R-Tree spatial
index

Tiled based
rendering

Cache

Select flow line near
water body (4995
polygons and 10654
lines)

728244ms (12
minutes)

23034ms (23 sec) 7457ms (7.5 sec) 3339ms (3.3 sec)

Select stream or river
near lake or pond
(2522 polygons and
4818 lines)

174998ms (3 minutes) 3698ms (3.7 sec) 1977ms (2 sec) 715ms (0.7 sec)

Select streets near high
schools (9 points and
3449 lines)

2234ms (2.2 sec) 2200ms (2.2 sec) 2172ms (2.1 sec) 155ms (0.1 sec)

Select streets near
“Fair Haven School”
and less than 500 feet
(1 points; 2481 lines)

1786ms (1.8 sec) 1690ms (1.7 sec) 1760ms (1.8 sec) 19ms (0.02 sec)

Select roads near
middle schools (4
points and 1537 lines)

879ms (0.9 sec) 871ms (0.9 sec) 874ms (0.9 sec) 36ms (0.04 sec)

Select high schools
near state highways (9
points and 29 lines)

217ms (0.2 sec) 211ms (0.2 sec) 226ms (0.2 sec) 18ms (0.02 sec)

Table 2. Performance of spatial joint query examples.

Some Query examples
Query examples Nested loop Plane sweep Index nested-

loop
Hierarchical
traversal join

Select stream or
river near lake or
pond (3818)

4431ms 366ms 315ms 368ms

Select flow line
intersecting water
body (3035)

2295ms 594ms 450ms 483ms

Select streets near
high schools(3440)

167ms 99ms 107ms 105ms

Select elementary
schools near
“Connecticut Tpke”
and intersecting
streets(3447)

201ms 155ms 133ms 130ms

Select streets
near ”Fair Haven
School” and less
than 500 feet
(2479)

59ms 84ms 72ms 196ms

Conclusion

◆ Our experimental results show that the
developed prototype can greatly reduce the
runtime costs of GeoSPARQL queries through
on-the-fly spatial index, tiled based rendering,
and cache techniques, especially for those
spatial joint GeoSPARQL queries involving a
large number of spatial features and heavy
geometric computations.

Conclusion

◆ There are some limitations in the currently
developed prototype:
◆ The on-the-fly R-tree index has its own limitation

due to its poor scaling characteristic.
◆ These pre-fetched tiles may consume significant

space in memory.
◆ A client might be using the stale cached data

because of a lack of proper updating.

Acknowledgement

◆ This work is supported by the U.S.
Geological Survey (USGS) (funding
G17AS00057).

Thank you!

