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Geospatial Semantic Web

◆ Geospatial databases created from a variety of 
sources have syntactic, structural, and semantic 
heterogeneity problems.

◆ Geospatial web services have been developed to 
provide access to heterogeneous geographic 
information on the Internet.



Geospatial Semantic Web

◆ By associating spatial data content from the Web 
with ontologies (that would supply context and 
meaning), the vision of Geospatial Semantic Web 
is to extract geospatial knowledge from the Web 
regardless of geospatial data formats or sources; 
thus it can facilitate transparent geospatial data 
exchange, sharing, and query. 



Introduction

◆ Geospatial Semantic Web promises better retrieval 
of geospatial information for the Web. 

◆ It also promotes sharing and reuse of spatial data 
for a wide variety of applications by using 
standardized Semantic Web languages such as 
RDF. 

◆ The USGS (United States Geological Survey) have 
been working on developing ontologies for The 
National Map for many years using RDF language.



Introduction

◆ However, representing structured geospatial 
data in these languages can result in 
inefficient data access. 

◆ One of the main obstacles that prevent 
efficient and distributed query on geospatial 
knowledge base is the lack of indexing on 
spatially related data objects. 



Introduction

◆ It is possible to recreate indices for RDF objects 
with spatial attributes in knowledge bases such as 
Parliament and Strabon.

◆ However, pre-computing spatial indices does not 
guarantee performance improvement since the 
RDF queries are much more flexible than 
database queries and it is difficult to predict 
which spatial objects should be indexed and how.



Introduction

◆ Geo-SPARQL queries are dominated by 
spatial join operations due to the fine-
grained nature of RDF data model. 

◆ Lack of spatial indices causes additional 
performance problems for Geo-SPARQL 
queries. 



Introduction
◆ In literature, different approaches have been widely 

used for improving spatial joint performance for a 
long time. 

◆ However, past research on improving query 
performance has been centered on offline relational 
databases. 

◆ Optimizing techniques for offline spatial relational 
databases do not specialize on the triple model of 
RDF and triple patterns of GeoSPARQL queries. 



Introduction

◆ To the best of our knowledge, there are few 
studies to explore support efficient spatial RDF 
query, which is an important issue for the 
development of Geospatial Semantic Web.



Research Objectives
◆ Explore approaches for efficient spatial knowledge 

queries of The National Map.
◆ The ultimate goal is to make spatial knowledge 

query flexible and efficient so that it can replace the 
current ad hoc Web interface of The National Map.
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Query rewriting algorithms 

◆ To avoid the problems of data replication and 
minimize the bulk of transferred data from the 
data server, we do not create RDF ontology 
instances explicitly. 

◆ Instead, we use a query rewriting approach to 
enable GeoSPARQL ontology query on spatial 
data available from WFS services and data 
stored in databases. 



Query rewriting algorithms 

Input: target query q

A set of inference rules I

For each triple t in q.body

For each inference rule I in I

If there exists a substitution s such that s (i.head) = t

Then replace t in q.body with s (i.body)

End for

End for

Output: q׳ where q׳.body has only triples in RDF mapping

(a)Rewrite GeoSPARQL queries to WFS queries algorithm part
1: apply inference rule to GeoSPARQL query



Query rewriting algorithms 
Input: target query q

A set of mapping rules M

Initialize: apply algorithm 1 to q to obtain q׳

Group triples in q׳.body by subject name

Resulting a set of triple groups L

For each triple group t in L

For each mapping rule m inM

If there exists a substitution s such that

s(m.body) contains all triples in t

Then replace t in q׳ with s (m.head)

End for

End for

Output: q׳ where q׳.body contains WFS get Feature requests

(a)Rewrite GeoSPARQL queries to WFS queries algorithm
part 2: query rewriting



Tile-based rendering 

◆ Two types of tile-based rendering techniques: 
vector tiles and raster tiles.

◆ Use a modified Ramer-Douglas-Peucker 
simplification algorithm (Hershberger and 
Snoeyink 1992) to recursively find the most 
important points in a polyline and discard 
unnecessary detail in each tile. 



Tile-based rendering 

◆ Geometries that are too tiny to be displayed on 
any particular zoom level are filtered using the 
pre-calculated values.

◆ The bounding box of each geographic feature are 
used to make fast clipping. 

◆ The well-known Tile Pyramid structure based on 
a level-of-detail (LOD) model are adopted for 
efficient large map image rendering and fast tile 
scheduling. 



Cache techniques 

◆ In this study the client-side mobile 
devices/computers cache the tiles on their sides via 
the tile mechanism to reduce the user-perceived 
response time and improve user navigation and 
query efficiency. 

◆ The commonly used tiles are cached in advance.
◆ While a client is viewing one of the commonly used 

tiles, the next possible tiles are pre-fetched by the 
system using a simple prefetching mechanism. 



Cache techniques 

◆ Based on the prefetching mechanism, tiles 
around the map view extent are requested 
from the application/data servers while the 
user requests the tiles inside the map view 
extent. 

◆ Because the tiles that represent the next 
navigation/query of the client are already in 
the cache, seamless navigation or fast query 
can be provided to the client. 



Separating spatial query from 
non-spatial query 

◆ Instead of processing the triple statements of 
GeoSPARQL query in sequence, we separate 
the triple non-spatial statements from the 
filtering statements that involved spatial 
computations, which typically are very costly. 

◆ This way a smaller set of ontology objects can 
be obtained after non-spatial sub-queries so that 
their spatial attributes can be cached for 
subsequent spatial computation including on-
the-fly spatial indexing and spatial joins. 



On-the-fly spatial indexing 

◆ Construct spatial indices on-the-fly for the spatial 
objects returned from the non-spatial component 
of the query.

◆ We employ the R-Tree technique to the on-the-
fly spatial indexing for GeoSPARQL queries in 
the system due to simplicity of the R-Tree 
structure and its ability to handle spatial objects 
efficiently.



Spatial Join Algorithms 

◆ The nested-loop join algorithm
◆ The index nested-loop (R-Tree) join 

algorithm
◆ The plane sweep join algorithm 
◆ The hierarchical traversal join (R-Tree) 

algorithm



Flowchart for nested 
loop join algorithm



Flowchart for index 
nested-loop join algorithm



Flowchart for plane 
sweep join algorithm



Flowchart for
hierarchical traversal
join algorithm



Some experimental results 

◆ The implemented prototype can be accessible 
from the website: 
http://tianpar.cs.uwm.edu:8080/nh-hydro/
http://tianpar.cs.uwm.edu:8080/usgs/

http://tianpar.cs.uwm.edu:8080/nh-hydro/
http://tianpar.cs.uwm.edu:8080/usgs/






Table 1. The total number of features for each of the involved 
spatial data layers.

Layers Number of features

Flow_line 10654

Water_body 4995

Streets 3449

Roads 1537

Places 54



We conducted six GeoSPARQL queries on the client side computer as listed below:
1. Select flow line near water body, which involves 4995 waterbody polygon 
features and 10654 flowline line features for the spatial joint query after the initial 
filtering using non-spatial query.
2. Select stream or river near lake or pond, which involves 2522 waterbody 
polygon features and 4818 flowline features for the spatial joint query after the 
initial filtering using non-spatial query.
3. Select streets near high schools, which involves 9 school point features and 
3449 street line features for the spatial joint query after the initial filtering using 
non-spatial query.
4. Select streets near “Fair Haven School” and less than 500 feet, which 
involves 1 school point feature and 2481 street line features for the spatial joint 
query after the initial filtering using non-spatial query.
5. Select roads near middle schools, which involves 4 school point features 
and 1537 road line features for the spatial joint query after the initial filtering using 
non-spatial query.
6. Select high schools near state highways, which involves 9 school point 
features and 29 highway line features for the spatial joint query after the initial 
filtering using non-spatial query.



Nested Loop 
algorithm

R-Tree spatial 
index

Tiled based 
rendering

Cache

Select flow line near 
water body (4995 
polygons and 10654 
lines)

728244ms (12 
minutes)

23034ms (23 sec) 7457ms (7.5 sec) 3339ms (3.3 sec)

Select stream or river 
near lake or pond 
(2522 polygons and 
4818 lines)

174998ms (3 minutes) 3698ms (3.7 sec) 1977ms (2 sec) 715ms (0.7 sec)

Select streets near high 
schools (9 points and 
3449 lines)

2234ms (2.2 sec) 2200ms (2.2 sec) 2172ms (2.1 sec) 155ms (0.1 sec)

Select streets near 
“Fair Haven School” 
and less than 500 feet 
(1 points; 2481 lines)

1786ms (1.8 sec) 1690ms (1.7 sec) 1760ms (1.8 sec) 19ms (0.02 sec)

Select roads near 
middle schools (4 
points and 1537 lines)

879ms (0.9 sec) 871ms (0.9 sec) 874ms (0.9 sec) 36ms (0.04 sec)

Select high schools 
near state highways (9 
points and 29 lines)

217ms (0.2 sec) 211ms (0.2 sec) 226ms (0.2 sec) 18ms (0.02 sec)

Table 2. Performance of spatial joint query examples.



Some Query examples
Query examples Nested loop Plane sweep Index nested-

loop
Hierarchical 
traversal join

Select stream or 
river near lake or 
pond (3818)

4431ms 366ms 315ms 368ms

Select flow line 
intersecting water 
body (3035)

2295ms 594ms 450ms 483ms

Select streets near 
high schools(3440)

167ms 99ms 107ms 105ms

Select elementary 
schools near 
“Connecticut Tpke” 
and intersecting 
streets(3447)

201ms 155ms 133ms 130ms

Select streets 
near ”Fair Haven 
School” and less 
than 500 feet 
(2479)

59ms 84ms 72ms 196ms



Conclusion

◆ Our experimental results show that the 
developed prototype can greatly reduce the 
runtime costs of GeoSPARQL queries through 
on-the-fly spatial index, tiled based rendering, 
and cache techniques, especially for those 
spatial joint GeoSPARQL queries involving a 
large number of spatial features and heavy 
geometric computations. 



Conclusion

◆ There are some limitations in the currently 
developed prototype: 
◆ The on-the-fly R-tree index has its own limitation 

due to its poor scaling characteristic.
◆ These pre-fetched tiles may consume significant 

space in memory.
◆ A client might be using the stale cached data 

because of a lack of proper updating.



Acknowledgement 

◆ This work is supported by the U.S.
Geological Survey (USGS) (funding
G17AS00057).



Thank you!


