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Impact crater map is important for

• Research on evolution of stars’ surfaces (Neukum et al., 2001)

• Engineering such as probe landing and self-driving

1. Background
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……

(Neukum et al., 2001; Cheng et al., 2016)



Crater detection
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Shortcomings: labor-intensive, low efficiency, and high cost

• Traditional way: manual delineation based on visual judgement

Domain experts

Imagery Impact crater map



Crater detection approaches (CDAs) based on image analysis
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1) Ring-like rim of crater 2) Pattern of Bright-dark

• Image characteristics of craters:

(Barata et al., 2004; Kim et al., 2005; Salamunićcar & Lončarić, 

2008; Salamunićcar et al., 2010; Luo et al., 2011)

(Sawabe et al., 2006; Urbach & Stepinski, 2009; Ding et al., 2011)

superimposed craters

?
Shortcomings:

• Image quality issue due to lighting conditions, terrain 

conditions, etc. (Stepinski et al., 2009)

• 2D image cannot well reflect the spatial structure of 

craters, especially of those superimposed craters and 

degraded craters.
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DEM

CDAs based on terrain analysis

Stage 1: detect crater 

candidate area at cell level

Stage 2: determine craters 

at object level

• General workflow: two-stage process
(Bue & Stepinski, 2007; Stepinski et al., 2009; Stepinski et al., 2012; Wan et al., 2012; Yue et 
al., 2013; Zuo et al., 2015; Vamshi et al., 2016; Liu et al., 2017)

• Gridded DEM records 3D information of craters and thus could reveal 

the spatial structure of craters (Stepinski et al., 2009; Wan et al., 2012)



• Type 1: Depression-filling & manually-determined rules on shape (Bue & 

Stepinski, 2007; Wan et al., 2012; Yue et al., 2013; Zuo et al., 2015; Vamshi et al., 2016; Liu et al., 2017)

• Shortcomings: View craters as simple round depressions, thus ignore the 

spatial structural information of craters; limit effectiveness
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DEM flooding

Crater 

candidate 

area

Judge the roundness of 

crater candidate objects

Crater

map

Stage 1   Stage 2

Existing CDAs based on terrain analysis

• Type 2: AutoCrat (Stepinski et al., 2009; Stepinski et al., 2012)

• Shortcomings: Using a set of simple shape indices only partly consider the 

spatial structural information of craters (not inside craters)

DEM

Depression-finding: 

Slope gradient 

change + 

connected 

component anal. 

Crater 

candidate 

area

C4.5 decision tree with 

shape indices of crater 

objects: diameter; depth; 

depth-diameter ratio, 

elongation, lumpiness

Crater

map

Stage 1   Stage 2
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How to design a new automatic approach to detecting 

craters based on DEM

• effectively consider the spatial structural information 

of real craters

Study issue

?

x

y

z

φ r

h

 Existing CDAs mainly consider conceptual crater 

(with simplified shape/spatial structure).

 Spatial structure of real craters is complicated

……

center

center

A crater



DEM
DEM

Spatial 

structural 

info.
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• Mining implicit expert 

knowledge on spatial structure 

of real craters;

• and using it to detect craters in 

other areas with DEM

A new automatic approach to detecting craters

Experts

Crater 
map

DEM

(+ image)

Machine learning

2. Basic idea

DEM

Existing crater map 

delineated by 

experts

training 
samples

input 
features 

……



Framework of the proposed approach

Collect training 

samples at cell 

level

Crater map

DEM

Training area

Machine learning 

classifier 1

(cell level)

Prepare input features 

with spatial structural 

info (cell level)

Stage 1

Stage 2

Crater 

candidate 

cells

Training Applying

Application area

DEM

Crater 

candidate 

objectsCollect training 

samples at object 

level

Machine learning 

classifier 2

(object level)

Prepare input features 

with spatial structural 

info (object level)

Crater detection 

results
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3. Detailed design of the proposed approach
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• Machine learning classifier: Random Forests (Breiman, 2001)

(Bassa et al., 2016)



How to train RF classifier to detect crater candidate cells? 

Collect training 

samples at cell 

level

Crater map

DEM

Training area

Random Forests 

classifier 1

(cell level)

Prepare input features 

with spatial structural 

info (cell level)

Stage 1

Stage 2

Crater 

candidate 

cells

Training Applying

Application area

DEM

Crater 

candidate 

objectsCollect training 

samples at object 

level

Random Forests 

classifier 2

(object level)

Prepare input features 

with spatial structural 

info (object level)

Crater detection 

results
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(Jasiewicz & Stepinski, 2013)

Input features with spatial structural information at cell level

Openness (Yokoyama et al., 2002)

Determine feature 

point with max beta-

angle (Jasiewicz & 

Stepinski, 2013)

A location with 

different analysis 

scale could show 

different landform 

element types (Fisher 

et al., 2004; Deng et al., 

2008)

• Multi-scale landform element (Kang et al., 2016)

• Extend the Geomorphons method (Jasiewicz & Stepinski, 

2013), which derives landform element at single 

analysis scale, to multi-scale

• Determine feature point at each analysis scale based 

on Douglas & Peucker (1973) 10-type landform element

A

End point: 

anal scale[1..N]
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…
…

• Input feature: multi-scale landform 

elements for each sample (i.e., 

landform element types at a series of 

analysis scale)

Multi-scale 

landform element

r = N

r = 3

r = 4

Training samples with input features for RF at cell level

- Positive sample

- Negative sample

crater map

…
…



How to create crater candidate objects from candidate cells? 

Crater map

DEM

Training area

Random Forests 
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Crater 

candidate 

cells

Training Applying

Application area
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Crater detection 

results
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Training samples: 

crater cells & 

non-crater cells

Features of cell:

Multi-scale landform 

element
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De-noising by mathematical 

morphology (open op.)

+ DBSCAN clustering

Crater candidate cells

Crater candidate objects

crater candidate cells  candidate objects

Random Forests 

classifier 1

(cell level)

Minimum circumscribed circle 

 candidate object



How to train RF classifier to determine craters? 

Crater map

DEM

Training area

Random Forests 
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Crater detection 
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Training samples: 

crater cells & 

non-crater cells

Features of cell:

Multi-scale landform 

element
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Crater map + DEM Radial elevation profile

Input features with spatial structural information at object level

Spatial structure of real craters

……

center

center border

Radius of candidate object

Normalized 

Relief
Radial profile

Input feature

(with same dimension 

for every sample for a 

RF)
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- Positive sample

- Negative sample

Train the object-level RF classifier to determine craters

• Train the object-level RF with those training samples with features (normalized 

radial elevation profile) in training area 

Crater objects in training area 

• The trained RF classifier  Judge the 

candidate objects in application area

A candidate object will 

be recognized as real 

crater, if the ratio of its 

radial profiles being of 

crater > a threshold 

(e.g., 50%).crater non-crater

Crater profile

Non-crater profile



Detailed workflow of the proposed approach
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Training samples: 

crater cells & 

non-crater cells

Features of cell:

Multi-scale landform 

element

Training samples: 

crater & non-crater 

radial profiles

Features (obj. level): 

normalized radial 

elevation profile
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Data source:

• LOLA (Lunar Orbiter Laser Altimeter) crater map (diameter of crater ≥ 20 km)
(Kadish et al., 2011)

• Chang’E-1 DEM (resolution: 500 m) (Wu et al., 2011)

4. Case study: lunar impact craters



Study area settings

• Training area: 78,000 km2; 490*640 cells

• Application area: 476,000 km2; 1190*1600 cells 

(~6 times of training area)

• Distance: ~2000 km

Training area (with 18 LOLA craters)

Application area 

(with 92 LOLA craters) 22



• The reference approach: the state-of-the-art AutoCrat (Stepinski et al., 2009; 

Stepinski et al., 2012)

• http://cratermatic.sourceforge.net/

• Quantitative evaluation 

1) Individual correctness index (C-value)

 A crater is detected “correctly”, if the C-value > a user-assigned C-threshold       

(0.3, 0.4, 0.5, 0.6, and 0.7 were tested in this study)

23

C-value = IntersectionArea(T, D) / UnionArea(T, D) 

(T: the crater in LOLA; D: the crater recognized by the proposed approach)

Evaluation method

2) Matching ratio = Count(craters detected correctly) / Count(LOLA craters) * 100%

http://cratermatic.sourceforge.net/
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4. Evaluation results & discussion

• Crater count in application area

LOLA: 92; the proposed approach: 94;  AutoCrat: 71



C-threshold
Craters matching to LOLA matching ratio 

the proposed appr. AutoCrat the proposed appr. AutoCrat

0.7 43 37 46.7% 40.2%

0.6 56 44 60.9% 47.8%

0.5 62 49 67.4% 53.3%

0.4 68 49 73.9% 53.3%

0.3 71 51 77.2% 55.4%
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“Correctly” detected craters with different individual correctness threshold

(C-value >= 0.5)

craters matching to LOLA

the proposed 

appr.
AutoCrat

craters correctly 

detected by both

appr.

40

craters correctly 

detected just by 

one appr.

22 9

Matching ratio 67.4% 53.3%
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Simple crater Superimposed craters Multiple connected 

craters

AutoCrat The proposed approach LOLA

Discussion

Different types of craters detected correctly by the proposed approach

 Simple craters / degraded craters

 Superimposed craters

 Multiple connected craters created probably by one impact event



Discussion

• Frequency of detected craters with different radiuses

The proposed approach showed reasonable extrapolation performance.
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6. Summary

 An automatic approach to detecting impact crater: Machine 

learning + existing crater map + spatial structural information 

from DEM

 mine implicit expert knowledge on spatial structure of real craters from 

existing crater map

 effectively consider the spatial structural information inside real craters  

 from two levels, respectively (i.e., cell, and object)

 Potential

 The methodology and framework of the proposed approach could also 

be applied to mapping other geomorphologic types (e.g., volcanic 

crater, sand dune, V-shape channel, …).
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