Automatic crater detection based on random forests, existing crater map, and spatial structural information from DEM

Cheng-Zhi QIN

(State Key Laboratory of Resources and Environment Information System, Institute of Geographic Sciences & Natural Resources Research, Chinese Academy of Sciences)

2019-4-5

Contents

- 1. Background & study issue
- 2. Basic idea
- 3. Design of the proposed approach
- 4. Case study
- 5. Evaluation results & discussion
- 6. Summary

1. Background

Impact crater map is important for

- Research on evolution of stars' surfaces (Neukum et al., 2001)
- Engineering such as probe landing and self-driving

Crater detection

Traditional way: manual delineation based on visual judgement

Imagery

Impact crater map

Shortcomings: labor-intensive, low efficiency, and high cost

Crater detection approaches (CDAs) based on image analysis

- Image characteristics of craters:
 - 1) Ring-like rim of crater

2) Pattern of Bright-dark

(Sawabe et al., 2006; Urbach & Stepinski, 2009; Ding et al., 2011)

(Barata et al., 2004; Kim et al., 2005; Salamunićcar & Lončarić, 2008; Salamunićcar et al., 2010; Luo et al., 2011)

Shortcomings:

- Image quality issue due to lighting conditions, terrain conditions, etc. (Stepinski et al., 2009)
- 2D image cannot well reflect the spatial structure of craters, especially of those superimposed craters and degraded craters.

superimposed craters

CDAs based on terrain analysis

- Gridded DEM records 3D information of craters and thus could reveal the spatial structure of craters (Stepinski et al., 2009; Wan et al., 2012)
- General workflow: two-stage process

(Bue & Stepinski, 2007; Stepinski et al., 2009; Stepinski et al., 2012; Wan et al., 2012; Yue et al., 2013; Zuo et al., 2015; Vamshi et al., 2016; Liu et al., 2017)

Existing CDAs based on terrain analysis

- Type 1: Depression-filling & manually-determined rules on shape (Bue & Stepinski, 2007; Wan et al., 2012; Yue et al., 2013; Zuo et al., 2015; Vamshi et al., 2016; Liu et al., 2017)
 - Shortcomings: View craters as simple round depressions, thus ignore the spatial structural information of craters; limit effectiveness

- Type 2: AutoCrat (Stepinski et al., 2009; Stepinski et al., 2012)
 - Shortcomings: Using a set of simple shape indices only partly consider the spatial structural information of craters (not inside craters)

Study issue

How to design a new automatic approach to detecting craters based on DEM

 effectively consider the spatial structural information of real craters

2. Basic idea

A new automatic approach to detecting craters

Framework of the proposed approach

3. Detailed design of the proposed approach

• Machine learning classifier: Random Forests (Breiman, 2001)

How to train RF classifier to detect crater candidate cells?

Input features with spatial structural information at cell level

Training samples with input features for RF at cell level

- Positive sample
- Negative sample

 Input feature: multi-scale landform elements for each sample (i.e., landform element types at a series of analysis scale)

How to create crater candidate objects from candidate cells?

crater candidate cells \rightarrow candidate objects

Crater candidate cells

Crater candidate objects

How to train RF classifier to determine craters?

Input features with spatial structural information at object level

Train the object-level RF classifier to determine craters

• Train the object-level RF with those training samples with features (normalized radial elevation profile) in training area

- Positive sample
- Negative sample
- The trained RF classifier \rightarrow Judge the candidate objects in application area

crater

Crater profile

Non-crater profile

A candidate object will be recognized as real crater, if the ratio of its radial profiles being of crater > a threshold (e.g., 50%). non-crater

Detailed workflow of the proposed approach

4. Case study: lunar impact craters

Data source:

- LOLA (Lunar Orbiter Laser Altimeter) crater map (diameter of crater ≥ 20 km) (Kadish et al., 2011)
- Chang'E-1 DEM (resolution: 500 m) (Wu et al., 2011)

Study area settings

Evaluation method

- The reference approach: the state-of-the-art AutoCrat (Stepinski et al., 2009; Stepinski et al., 2012)
 - http://cratermatic.sourceforge.net/
- Quantitative evaluation
 - 1) Individual correctness index (C-value)

C-value = IntersectionArea(T, D) / UnionArea(T, D)

(T: the crater in LOLA; D: the crater recognized by the proposed approach)

 A crater is detected "correctly", if the C-value > a user-assigned C-threshold (0.3, 0.4, 0.5, 0.6, and 0.7 were tested in this study)

2) Matching ratio = Count(craters detected correctly) / Count(LOLA craters) * 100%

4. Evaluation results & discussion

• Crater count in application area

"Correctly" detected craters with different individual correctness threshold

C-threshold	Craters matching to LOLA		matching ratio	
	the proposed appr.	AutoCrat	the proposed appr.	AutoCrat
0.7	43	37	46.7%	40.2%
0.6	56	44	60.9%	47.8%
0.5	62	49	67.4%	53.3%
0.4	68	49	73.9%	53.3%
0.3	71	51	77.2%	55.4%

-	craters matching to LOLA			
(<i>C</i> -value >= 0.5)	the proposed appr.	AutoCrat		
craters correctly detected by both appr.	40			
craters correctly detected just by one appr.	22	9		
Matching ratio	67.4%	53.3%		

Discussion

Different types of craters detected correctly by the proposed approach

- ✓ Simple craters / degraded craters
- ✓ Superimposed craters
- ✓ Multiple connected craters created probably by one impact event

Discussion

• Frequency of detected craters with different radiuses

The proposed approach showed reasonable extrapolation performance.

6. Summary

- An automatic approach to detecting impact crater: Machine learning + existing crater map + spatial structural information from DEM
 - mine implicit expert knowledge on spatial structure of real craters from existing crater map
 - effectively consider the spatial structural information inside real craters
 - from two levels, respectively (i.e., cell, and object)
- Potential
 - The methodology and framework of the proposed approach could also be applied to mapping other geomorphologic types (e.g., volcanic crater, sand dune, V-shape channel, ...).

Thank You for Your Attention !

Acknowledgements: grant from Chinese Academy of Sciences (Project No.: XDPB11)

秦承志 (QIN Cheng-Zhi)

Email: <u>qincz@lreis.ac.cn</u> Webpage: <u>http://people.ucas.ac.cn/~qincz?language=en</u>